#### 2015.05.08

## A10-DATASHEET Subscribe Send Feedback

This datasheet describes the electrical characteristics, switching characteristics, configuration specifications, and I/O timing for Arria<sup>®</sup> 10 devices.

Arria 10 devices are offered in extended and industrial grades. Extended devices are offered in -E1 (fastest), -E2, and -E3 speed grades. Industrial grade devices are offered in the -I1, -I2, and -I3 speed grades.

The suffix after the speed grade denotes the power options offered in Arria 10 devices.

- L—Low static power
- S—Standard power
- M—Enabled with the  $V_{CC}$  PowerManager feature (you can power  $V_{CC}$  and  $V_{CCP}$  at nominal voltage of 0.90 V or lower voltage of 0.83 V)

#### **Related Information**

#### Arria 10 Device Overview

Provides more information about the densities and packages of devices in the Arria 10 family.

# **Electrical Characteristics**

The following sections describe the operating conditions and power consumption of Arria 10 devices.

# **Operating Conditions**

Arria 10 devices are rated according to a set of defined parameters. To maintain the highest possible performance and reliability of the Arria 10 devices, you must consider the operating requirements described in this section.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered



## **Absolute Maximum Ratings**

This section defines the maximum operating conditions for Arria 10 devices. The values are based on experiments conducted with the devices and theoretical modeling of breakdown and damage mechanisms. The functional operation of the device is not implied for these conditions.

**Caution:** Conditions outside the range listed in the following table may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

#### Table 1: Absolute Maximum Ratings for Arria 10 Devices—Preliminary

| Symbol                   | Description                                                            | Condition | Minimum | Maximum | Unit |
|--------------------------|------------------------------------------------------------------------|-----------|---------|---------|------|
| V <sub>CC</sub>          | Core voltage power supply                                              | _         | -0.50   | 1.21    | V    |
| V <sub>CCP</sub>         | Periphery circuitry and transceiver fabric interface power supply      | _         | -0.50   | 1.21    | V    |
| V <sub>CCERAM</sub>      | Embedded memory power supply                                           | _         | -0.50   | 1.36    | V    |
| V <sub>CCPT</sub>        | Power supply for programmable power technology and I/O pre-driver      |           | -0.50   | 2.46    | V    |
| V <sub>CCBAT</sub>       | Battery back-up power supply for design security volatile key register | _         | -0.50   | 2.46    | V    |
| V <sub>CCPGM</sub>       | Configuration pins power supply                                        | _         | -0.50   | 2.46    | V    |
| V                        | I/O huffore new or supply                                              | 3 V I/O   | -0.50   | 4.10    | V    |
| V <sub>CCIO</sub>        | I/O buffers power supply                                               | LVDS I/O  | -0.50   | 2.46    | V    |
| V <sub>CCA_PLL</sub>     | Phase-locked loop (PLL) analog power supply                            | _         | -0.50   | 2.46    | V    |
| V <sub>CCT_GXB</sub>     | Transmitter power                                                      | _         | -0.50   | 1.34    | V    |
| V <sub>CCR_GXB</sub>     | Receiver power                                                         |           | -0.50   | 1.34    | V    |
| V <sub>CCH_GXB</sub>     | Transmitter output buffer power                                        | _         | -0.50   | 2.46    | V    |
| V <sub>CCL_HPS</sub>     | HPS core voltage and periphery circuitry power supply                  | _         | -0.50   | 1.27    | V    |
| V                        | HDS I/O buffare power supply                                           | 3 V I/O   | -0.50   | 4.10    | V    |
| V <sub>CCIO_HPS</sub>    | HPS I/O buffers power supply                                           | LVDS I/O  | -0.50   | 2.46    | V    |
| V <sub>CCIOREF_HPS</sub> | HPS I/O pre-driver power supply                                        | _         | -0.50   | 2.46    | V    |



| Symbol                 | Description                    | Condition | Minimum | Maximum | Unit |
|------------------------|--------------------------------|-----------|---------|---------|------|
| V <sub>CCPLL_HPS</sub> | HPS PLL power supply           | _         | -0.50   | 2.46    | V    |
| I <sub>OUT</sub>       | DC output current per pin      |           | -25     | 25      | mA   |
| T <sub>J</sub>         | Operating junction temperature |           | -55     | 125     | °C   |
| T <sub>STG</sub>       | Storage temperature (no bias)  |           | -65     | 150     | °C   |

#### Maximum Allowed Overshoot and Undershoot Voltage

During transitions, input signals may overshoot to the voltage listed in the following table and undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.

The maximum allowed overshoot duration is specified as a percentage of high time over the lifetime of the device. A DC signal is equivalent to 100% duty cycle.

For example, a signal that overshoots to 2.70 V for LVDS I/O can only be at 2.70 V for ~4% over the lifetime of the device.

#### Table 2: Maximum Allowed Overshoot During Transitions for Arria 10 Devices—Preliminary

This table lists the maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage of device lifetime. The LVDS I/O values are applicable to the VREFP\_ADC and VREFN\_ADC I/O pins.

| Symbol  | Description      | Condit       | ion (V)      | Overshoot Duration as % at $T_J = 100^{\circ}C$ | Unit |
|---------|------------------|--------------|--------------|-------------------------------------------------|------|
| Symbol  | Description      | LVDS I/O     | 3 V I/O      |                                                 | Ont  |
|         |                  | 2.50         | 3.80         | 100                                             | %    |
|         |                  | 2.55         | 2.55 3.85 42 |                                                 | %    |
| Vi (AC) | AC input voltage | 2.60 3.90 18 |              | %                                               |      |
| VI (AC) | AC input voltage | 2.65 3.95 9  |              | 9                                               | %    |
|         |                  | 2.70 4.00 4  |              | %                                               |      |
|         |                  | > 2.70       | > 4.00       | No overshoot allowed                            | %    |

## **Recommended Operating Conditions**

This section lists the functional operation limits for the AC and DC parameters for Arria 10 devices.



4

### **Recommended Operating Conditions**

## Table 3: Recommended Operating Conditions for Arria 10 Devices—Preliminary

This table lists the steady-state voltage values expected from Arria 10 devices. Power supply ramps must all be strictly monotonic, without plateaus.

| Symbol                            | Description                                                       | Condition                                   | Minimum <sup>(1)</sup> | Typical   | Maximum <sup>(1)</sup> | Unit |
|-----------------------------------|-------------------------------------------------------------------|---------------------------------------------|------------------------|-----------|------------------------|------|
|                                   |                                                                   | Standard and low power                      | 0.87                   | 0.9 (2)   | 0.93                   | V    |
| V <sub>CC</sub>                   | Core voltage power supply                                         | V <sub>CC</sub> PowerManager <sup>(3)</sup> | 0.8, 0.87              | 0.83, 0.9 | 0.86, 0.93             | V    |
|                                   |                                                                   | SmartVID                                    | 0.8                    |           | 0.93                   | V    |
|                                   |                                                                   | Standard and low power                      | 0.87                   | 0.9 (2)   | 0.93                   | V    |
| V <sub>CCP</sub>                  | Periphery circuitry and transceiver fabric interface power supply | V <sub>CC</sub> PowerManager <sup>(3)</sup> | 0.8, 0.87              | 0.83, 0.9 | 0.86, 0.93             | V    |
|                                   | 1 11 /                                                            | SmartVID                                    | 0.8                    | _         | 0.93                   | V    |
|                                   |                                                                   | 1.8 V                                       | 1.71                   | 1.8       | 1.89                   | V    |
| V <sub>CCPGM</sub>                | Configuration pins power supply                                   | 1.5 V                                       | 1.425                  | 1.5       | 1.575                  | V    |
|                                   |                                                                   | 1.2 V                                       | 1.14                   | 1.2       | 1.26                   | V    |
| V <sub>CCERAM</sub>               | Embedded memory power supply                                      | 0.9 V                                       | 0.87                   | 0.9(2)    | 0.93                   | V    |
| <b>V</b> (4)                      | Battery back-up power supply                                      | 1.8 V                                       | 1.71                   | 1.8       | 1.89                   | V    |
| V <sub>CCBAT</sub> <sup>(4)</sup> | (For design security volatile key register)                       | 1.2 V                                       | 1.14                   | 1.2       | 1.26                   | V    |



<sup>&</sup>lt;sup>(1)</sup> This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

<sup>&</sup>lt;sup>(2)</sup> You can operate -1 and -2 speed grade devices at 0.9 V or 0.95 V typical value. You can operate -3 speed grade device at only 0.9 V typical value. Core performance shown in this datasheet is applicable for the operation at 0.9 V. Operating at 0.95 V results in higher core performance and higher power consumption. For more information about the performance and power consumption of 0.95 V operation, refer to the Quartus<sup>®</sup> II software timing reports, PowerPlay Power Analyzer report, and Early Power Estimator (EPE).

<sup>&</sup>lt;sup>(3)</sup> You can operate V<sub>CC</sub> PowerManager devices at either 0.83 V or 0.9 V. Power V<sub>CC</sub> and V<sub>CCP</sub> at 0.9 V to achieve –1 speed grade performance. Power V<sub>CC</sub> and V<sub>CCP</sub> at 0.83 V to achieve lower performance using the lowest power.

<sup>&</sup>lt;sup>(4)</sup> If you do not use the design security feature in Arria 10 devices, connect V<sub>CCBAT</sub> to a 1.5-V or 1.8-V power supply. Arria 10 power-on reset (POR) circuitry monitors V<sub>CCBAT</sub>. Arria 10 devices do not exit POR if V<sub>CCBAT</sub> is not powered up.

A10-DATASHEET 2015.05.08

| Symbol                              | Description                                                       | Condition                | Minimum <sup>(1)</sup> | Typical | Maximum <sup>(1)</sup> | Unit |
|-------------------------------------|-------------------------------------------------------------------|--------------------------|------------------------|---------|------------------------|------|
| V <sub>CCPT</sub>                   | Power supply for programmable power technology and I/O pre-driver | 1.8 V                    | 1.71                   | 1.8     | 1.89                   | V    |
|                                     |                                                                   | 3.0 V (for 3 V I/O only) | 2.85                   | 3.0     | 3.15                   | V    |
|                                     |                                                                   | 2.5 V (for 3 V I/O only) | 2.375                  | 2.5     | 2.625                  | V    |
|                                     |                                                                   | 1.8 V                    | 1.71                   | 1.8     | 1.89                   | V    |
| V <sub>CCIO</sub>                   | I/O buffers power supply                                          | 1.5 V                    | 1.425                  | 1.5     | 1.575                  | V    |
|                                     |                                                                   | 1.35 V                   | (5)                    | 1.35    | (5)                    | V    |
|                                     |                                                                   | 1.25 V                   | 1.19                   | 1.25    | 1.31                   | V    |
|                                     |                                                                   | 1.2 V                    | (5)                    | 1.2     | (5)                    | V    |
| V <sub>CCA_PLL</sub>                | PLL analog voltage regulator power supply                         | _                        | 1.71                   | 1.8     | 1.89                   | V    |
| V <sub>REFP_ADC</sub>               | Precision voltage reference for voltage sensor                    | _                        | 1.2475                 | 1.25    | 1.2525                 | V    |
| V                                   | DC input voltage                                                  | 3 V I/O                  | -0.3                   | _       | 3.3                    | V    |
| VI                                  | DC input voltage                                                  | LVDS I/O                 | -0.3                   | _       | 2.19                   | V    |
| V <sub>O</sub>                      | Output voltage                                                    |                          | 0                      | _       | V <sub>CCIO</sub>      | V    |
| т                                   | Operating is action temperature                                   | Extended                 | 0                      | _       | 100                    | °C   |
| TJ                                  | Operating junction temperature                                    | Industrial               | -40                    |         | 100                    | °C   |
| <b>t</b> (6)(7)                     | Design complements time                                           | Standard POR             | 200 µs                 | _       | 100 ms                 | _    |
| t <sub>RAMP</sub> <sup>(6)(7)</sup> | Power supply ramp time                                            | Fast POR                 | 200 µs                 | _       | 4 ms                   | _    |

<sup>(1)</sup> This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

<sup>(5)</sup> For minimum and maximum voltage values, refer to the I/O Standard Specifications section.

 $^{(7)}$  t<sub>ramp</sub> is the ramp time of each individual power supply, not the ramp time of all combined power supplies.



<sup>&</sup>lt;sup>(6)</sup> This is also applicable to HPS power supply. For HPS power supply, refer to  $t_{RAMP}$  specifications for standard POR when HPS\_PORSEL = 0 and  $t_{RAMP}$  specifications for fast POR when HPS\_PORSEL = 1.

Transceiver Power Supply Operating Conditions

#### **Related Information**

6

I/O Standard Specifications on page 15

**Transceiver Power Supply Operating Conditions** 

#### Table 4: Transceiver Power Supply Operating Conditions for Arria 10 GX/SX Devices—Preliminary

| Symbol                    | Description                    | Condition <sup>(8)</sup>             | Minimum <sup>(9)</sup> | Typical | Maximum <sup>(9)</sup> | Unit |
|---------------------------|--------------------------------|--------------------------------------|------------------------|---------|------------------------|------|
|                           |                                | Chip-to-Chip ≤ 17.4 Gbps             | 1.0                    | 1.03    | 1.06                   | V    |
|                           |                                | Or                                   |                        |         |                        |      |
| V                         | Transmitter power supply       | Backplane $^{(10)} \leq 16.0$ Gbps   |                        |         |                        |      |
| V <sub>CCT_GXB[L,R]</sub> | Transmitter power suppry       | Chip-to-Chip ≤ 11.3 Gbps             | 0.870                  | 0.9     | 0.930                  | V    |
|                           |                                | Or                                   |                        |         |                        |      |
|                           |                                | Backplane $^{(10)} \le 10.3125$ Gbps |                        |         |                        |      |
|                           |                                | Chip-to-Chip ≤ 17.4 Gbps             | 1.0                    | 1.03    | 1.06                   | V    |
|                           |                                | Or                                   |                        |         |                        |      |
| V                         | Desition of the second second  | Backplane $^{(10)} \leq 16.0$ Gbps   |                        |         |                        |      |
| V <sub>CCR_GXB[L,R]</sub> | Receiver power supply          | Chip-to-Chip ≤ 11.3 Gbps             | 0.870                  | 0.9     | 0.930                  | V    |
|                           |                                | Or                                   |                        |         |                        |      |
|                           |                                | Backplane $^{(10)} \le 10.3125$ Gbps |                        |         |                        |      |
| V <sub>CCH_GXB[L,R]</sub> | Transceiver high voltage power | _                                    | 1.710                  | 1.8     | 1.890                  | V    |

<sup>&</sup>lt;sup>(8)</sup> These data rate ranges vary depending on the transceiver speed grade. Refer to Transceiver Performance for Arria 10 GX/SX Devices for exact data rate ranges.



<sup>&</sup>lt;sup>(9)</sup> This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

<sup>&</sup>lt;sup>(10)</sup> Backplane applications assume advanced equalization circuitry, such as decision feedback equalization (DFE), is enabled to compensate for signal impairments. Chip-to-chip links are assumed to be applications with short reach channels that do not require DFE.

**Note:** Most VCCR\_GXB and VCCT\_GXB pins associated with unused transceiver channels can be grounded on a per-side basis to minimize power consumption. Refer to the Quartus II pin report for information about pinning out the package to minimize power consumption for your specific design.

#### Table 5: Transceiver Power Supply Operating Conditions for Arria 10 GT Devices—Preliminary

| Symbol                    | Description              | Condition <sup>(11)</sup>                | Minimum <sup>(9)</sup> | Typical | Maximum <sup>(9)</sup> | Unit |
|---------------------------|--------------------------|------------------------------------------|------------------------|---------|------------------------|------|
|                           |                          | Chip-to-Chip < 28.3 Gbps <sup>(12)</sup> | 1.08                   | 1.11    | 1.14                   | V    |
|                           |                          | Or                                       |                        |         |                        |      |
|                           |                          | Backplane <sup>(10)</sup> < 17.4 Gbps    |                        |         |                        |      |
|                           |                          | Chip-to-Chip < 15 Gbps                   | 1.0                    | 1.03    | 1.06                   | V    |
| V <sub>CCT_GXB[L,R]</sub> | Transmitter power supply | Or                                       |                        |         |                        |      |
|                           |                          | Backplane <sup>(10)</sup> < 14.2 Gbps    |                        |         |                        |      |
|                           |                          | Chip-to-Chip < 11.3 Gbps                 | 0.870                  | 0.9     | 0.930                  | V    |
|                           |                          | Or                                       |                        |         |                        |      |
|                           |                          | Backplane <sup>(10)</sup> < 10.3125 Gbps |                        |         |                        |      |



<sup>&</sup>lt;sup>(11)</sup> These data rate ranges vary depending on the transceiver speed grade. Refer to Transceiver Performance for Arria 10 GT Devices table for exact data rate ranges.

<sup>&</sup>lt;sup>(12)</sup> 28.3 Gbps is the maximum data rate for GT channels. 17.4 Gbps is the maximum data rate for GX channels.

| Symbol                    | Description                           | Condition <sup>(11)</sup>                | Minimum <sup>(9)</sup> | Typical | Maximum <sup>(9)</sup> | Unit |
|---------------------------|---------------------------------------|------------------------------------------|------------------------|---------|------------------------|------|
|                           |                                       | Chip-to-Chip < 28.3 Gbps <sup>(12)</sup> | 1.08                   | 1.11    | 1.14                   | V    |
|                           |                                       | Or                                       |                        |         |                        |      |
|                           |                                       | Backplane <sup>(10)</sup> < 17.4 Gbps    |                        |         |                        |      |
|                           |                                       | Chip-to-Chip < 15 Gbps                   | 1.0                    | 1.03    | 1.06                   | V    |
| V <sub>CCR_GXB[L,R]</sub> | Receiver power supply                 | Or                                       |                        |         |                        |      |
|                           |                                       | Backplane <sup>(10)</sup> < 14.2 Gbps    |                        |         |                        |      |
|                           |                                       | Chip-to-Chip < 11.3 Gbps                 | 0.870                  | 0.9     | 0.930                  | V    |
|                           |                                       | Or                                       |                        |         |                        |      |
|                           |                                       | Backplane <sup>(10)</sup> < 10.3125 Gbps |                        |         |                        |      |
| V <sub>CCH_GXB[L,R]</sub> | Transceiver high voltage power supply |                                          | 1.710                  | 1.8     | 1.890                  | V    |

#### **Related Information**

- **Transceiver Performance for Arria 10 GT Devices** on page 25 Provides the data rate ranges for different transceiver speed grades.
- Transceiver Performance for Arria 10 GX/SX Devices on page 21 Provides the data rate ranges for different transceiver speed grades.



<sup>&</sup>lt;sup>(11)</sup> These data rate ranges vary depending on the transceiver speed grade. Refer to Transceiver Performance for Arria 10 GT Devices table for exact data rate ranges.

9

### **HPS Power Supply Operating Conditions**

### Table 6: HPS Power Supply Operating Conditions for Arria 10 SX Devices—Preliminary

This table lists the steady-state voltage and current values expected from Arria 10 system-on-a-chip (SoC) devices with ARM®-based hard processor system (HPS). Power supply ramps must all be strictly monotonic, without plateaus. Refer to Recommended Operating Conditions for Arria 10 Devices table for the steady-state voltage values expected from the FPGA portion of the Arria 10 SoC devices.

| Symbol                   | Description                                   | Condition                                        | Minimum <sup>(13)</sup> | Typical | Maximum <sup>(13)</sup> | Unit |
|--------------------------|-----------------------------------------------|--------------------------------------------------|-------------------------|---------|-------------------------|------|
| V <sub>CCL HPS</sub>     | HPS core voltage and periphery                | HPS processor speed = 1.2 GHz                    | 0.87                    | 0.9     | 0.93                    | V    |
| V CCL_HPS                | circuitry power supply                        | HPS processor speed =<br>1.5 GHz, –1 speed grade | 0.92                    | 0.95    | 0.98                    | V    |
|                          |                                               | 3.0 V                                            | 2.85                    | 3.0     | 3.15                    | V    |
| V <sub>CCIO_HPS</sub>    | HPS I/O buffers power supply                  | 2.5 V                                            | 2.375                   | 2.5     | 2.625                   | V    |
|                          |                                               | 1.8 V                                            | 1.71                    | 1.8     | 1.89                    | V    |
| V <sub>CCIOREF_HPS</sub> | HPS I/O pre-driver power supply               | —                                                | 1.71                    | 1.8     | 1.89                    | V    |
| V <sub>CCPLL_HPS</sub>   | HPS PLL analog voltage regulator power supply | _                                                | 1.71                    | 1.8     | 1.89                    | V    |

#### **Related Information**

#### **Recommended Operating Conditions** on page 4

Provides the steady-state voltage values for the FPGA portion of the device.

## **DC** Characteristics

The OCT variation after power-up calibration specifications will be available in a future release of the Arria 10 Device Datasheet.

#### **Supply Current and Power Consumption**

Altera offers two ways to estimate power for your design-the Excel-based Early Power Estimator (EPE) and the Quartus II PowerPlay Power Analyzer feature.

Arria 10 Device Datasheet



<sup>&</sup>lt;sup>(13)</sup> This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

#### I/O Pin Leakage Current

10

Use the Excel-based EPE before you start your design to estimate the supply current for your design. The EPE provides a magnitude estimate of the device power because these currents vary greatly with the usage of the resources.

The Quartus II PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-androute. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yield very accurate power estimates.

#### **Related Information**

- PowerPlay Early Power Estimator User Guide Provides more information about power estimation tools.
- PowerPlay Power Analysis chapter, Quartus II Handbook Provides more information about power estimation tools.

#### I/O Pin Leakage Current

#### Table 7: I/O Pin Leakage Current for Arria 10 Devices—Preliminary

#### If $V_O = V_{CCIO}$ to $V_{CCIOMAX}$ , 300 µA of leakage current per I/O is expected.

| Symbol          | Description        | Condition                      | Min | Max | Unit |
|-----------------|--------------------|--------------------------------|-----|-----|------|
| II              | Input pin          | $V_I = 0 V$ to $V_{CCIOMAX}$   | -80 | 80  | μΑ   |
| I <sub>OZ</sub> | Tri-stated I/O pin | $V_{O} = 0 V$ to $V_{CCIOMAX}$ | -80 | 80  | μΑ   |

## **Bus Hold Specifications**

The bus-hold trip points are based on calculated input voltages from the JEDEC standard.



## Table 8: Bus Hold Parameters for Arria 10 Devices—Preliminary

|                                             |                   |                                                             |                                           | V <sub>CCIO</sub> (V) |                                            |      |                                              |      |      |      |     |      |      |
|---------------------------------------------|-------------------|-------------------------------------------------------------|-------------------------------------------|-----------------------|--------------------------------------------|------|----------------------------------------------|------|------|------|-----|------|------|
| Parameter                                   | Symbol            | Condition                                                   | 1.                                        | .2                    | 1.                                         | .5   | 1.                                           | .8   | 2.   | .5   | 3   | .0   | Unit |
|                                             |                   |                                                             | Min                                       | Max                   | Min                                        | Max  | Min                                          | Max  | Min  | Max  | Min | Max  |      |
| Bus-hold,<br>low,<br>sustaining<br>current  | I <sub>SUSL</sub> | V <sub>IN</sub> > V <sub>IL</sub><br>(max)                  | 8 <sup>(14)</sup> ,<br>26 <sup>(15)</sup> |                       | 12 <sup>(14)</sup> ,<br>32 <sup>(15)</sup> |      | 30 <sup>(14)</sup> ,<br>55 <sup>(15)</sup>   |      | 60   |      | 70  |      | μΑ   |
| Bus-hold,<br>high,<br>sustaining<br>current | I <sub>SUSH</sub> | V <sub>IN</sub> < V <sub>IH</sub><br>(min)                  | $-8^{(14)},$<br>$-26^{(15)}$              |                       | $-12^{(14)},$<br>$-32^{(15)}$              |      | -30 <sup>(14)</sup> ,<br>-55 <sup>(15)</sup> |      | -60  |      | -70 |      | μΑ   |
| Bus-hold,<br>low,<br>overdrive<br>current   | I <sub>ODL</sub>  | $\begin{array}{c} 0 \ V < V_{IN} \\ < V_{CCIO} \end{array}$ |                                           | 125                   |                                            | 175  |                                              | 200  |      | 300  |     | 500  | μΑ   |
| Bus-hold,<br>high,<br>overdrive<br>current  | I <sub>ODH</sub>  | $\begin{array}{c} 0 \ V < V_{IN} \\ < V_{CCIO} \end{array}$ |                                           | -125                  |                                            | -175 |                                              | -200 |      | -300 |     | -500 | μΑ   |
| Bus-hold<br>trip point                      | V <sub>TRIP</sub> | _                                                           | 0.3                                       | 0.9                   | 0.38                                       | 1.13 | 0.68                                         | 1.07 | 0.70 | 1.7  | 0.8 | 2    | V    |

## **OCT Calibration Accuracy Specifications**

If you enable on-chip termination (OCT) calibration, calibration is automatically performed at power up for I/Os connected to the calibration block.

Arria 10 Device Datasheet

**Altera Corporation** 



 <sup>&</sup>lt;sup>(14)</sup> This value is only applicable for LVDS I/O bank.
 <sup>(15)</sup> This value is only applicable for 3 V I/O bank.

#### 12 **OCT Calibration Accuracy Specifications**

## Table 9: OCT Calibration Accuracy Specifications for Arria 10 Devices—Preliminary

| Calibration accuracy for the calibrated on-chip series termination (R <sub>S</sub> OCT) and on-chip parallel termination (R <sub>T</sub> OCT) are applicable at the moment of |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| calibration. When process, voltage, and temperature (PVT) conditions change after calibration, the tolerance may change.                                                      |

| Symbol                                                                          | Description                                                                                                                                                           | Condition (V)                                  | Ca         | libration Accura | асу        | Unit |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------|------------------|------------|------|
| Symbol                                                                          | Description                                                                                                                                                           | Condition (v)                                  | –E1, –I1   | –E2, –I2         | –E3, –I3   | Onit |
| 48-Ω, 60-Ω, 80-Ω, and 240-Ω $\rm R_S$                                           | Internal series termination with calibration (48- $\Omega$ , 60- $\Omega$ , 80- $\Omega$ , and 240- $\Omega$ setting)                                                 | $V_{CCIO} = 1.2$                               | ±15        | ±15              | ±15        | %    |
| 34- $\Omega$ and 40- $\Omega$ $R_S$                                             | Internal series termination with calibration (34- $\Omega$ and 40- $\Omega$ setting)                                                                                  | V <sub>CCIO</sub> = 1.5, 1.35, 1.25,<br>1.2    | ±15        | ±15              | ±15        | %    |
| 25-Ω R <sub>S</sub>                                                             | Internal series termination with calibration                                                                                                                          | V <sub>CCIO</sub> = 1.8, 1.5, 1.2              | ±15        | ±15              | ±15        | %    |
| 50-Ω R <sub>S</sub>                                                             | Internal series termination with calibration                                                                                                                          | V <sub>CCIO</sub> = 1.8, 1.5, 1.2              | ±15        | ±15              | ±15        | %    |
| 34- $\Omega$ , 40- $\Omega$ , 48- $\Omega$ ,<br>and 60- $\Omega$ R <sub>S</sub> | Internal series termination with calibration (34- $\Omega$ , 40- $\Omega$ , 48- $\Omega$ , and 60- $\Omega$ setting)                                                  | POD12 I/O standard,<br>V <sub>CCIO</sub> = 1.2 | ±15        | ±15              | ±15        | %    |
| 34-Ω, 40-Ω, 48-Ω,<br>60-Ω, 80-Ω, 120-Ω,<br>and 240-Ω R <sub>T</sub>             | Internal parallel termination with calibration (34- $\Omega$ , 40- $\Omega$ , 48- $\Omega$ , 60- $\Omega$ , 80- $\Omega$ , 120- $\Omega$ , and 240- $\Omega$ setting) | POD12 I/O standard,<br>V <sub>CCIO</sub> = 1.2 | ±15        | ±15              | ±15        | %    |
| 60- $\Omega$ and 120- $\Omega$ $R_T$                                            | Internal parallel termination with calibration (60- $\Omega$ and 120- $\Omega$ setting)                                                                               | V <sub>CCIO</sub> = 1.5, 1.35, 1.25, 1.2       | -10 to +40 | -10 to +40       | -10 to +40 | %    |
| 20- $\Omega$ , 30- $\Omega$ , and 40- $\Omega$ $R_{\rm T}$                      | Internal parallel termination with calibration (20- $\Omega$ , 30- $\Omega$ , and 40- $\Omega$ setting)                                                               | V <sub>CCIO</sub> = 1.5, 1.35, 1.25            | -10 to +40 | -10 to +40       | -10 to +40 | %    |
| 50-Ω R <sub>T</sub>                                                             | Internal parallel termination with calibration (50- $\Omega$ setting)                                                                                                 | V <sub>CCIO</sub> = 1.8, 1.5, 1.2              | -10 to +40 | -10 to +40       | -10 to +40 | %    |



#### **OCT Without Calibration Resistance Tolerance Specifications**

#### Table 10: OCT Without Calibration Resistance Tolerance Specifications for Arria 10 Devices—Preliminary

| Symbol               | Description                                                      | Condition (V)                | Re       | Unit     |          |     |
|----------------------|------------------------------------------------------------------|------------------------------|----------|----------|----------|-----|
| Symbol               | Description                                                      |                              | –E1, –I1 | –E2, –I2 | –E3, –I3 | Ont |
| 25-Ω R <sub>S</sub>  | Internal series termination without                              | V <sub>CCIO</sub> = 1.8, 1.5 | ±25      | ±35      | ±40      | %   |
|                      | calibration<br>(25-Ω setting)                                    | $V_{CCIO} = 1.2$             | ±25      | ±35      | ±40      | %   |
|                      | Internal series termination without                              | V <sub>CCIO</sub> = 1.8, 1.5 | ±25      | ±35      | ±40      | %   |
| 50-Ω R <sub>S</sub>  | calibration<br>(50-Ω setting)                                    | $V_{CCIO} = 1.2$             | ±25      | ±35      | ±40      | %   |
| 100-Ω R <sub>D</sub> | Internal differential termination $(100-\Omega \text{ setting})$ | V <sub>CCIO</sub> = 1.8      | ±25      | ±35      | ±40      | %   |

This table lists the Arria 10 OCT without calibration resistance tolerance to PVT changes.

Figure 1: Equation for OCT Variation Without Recalibration—Preliminary

$$R_{OCT} = R_{SCAL} \left( 1 + \left| \frac{dR}{dT} \times \Delta T \right| \pm \left| \frac{dR}{dV} \times \Delta V \right| \right)$$

The definitions for the equation are as follows:

- The R<sub>OCT</sub> value calculated shows the range of OCT resistance with the variation of temperature and V<sub>CCIO</sub>.
- R<sub>SCAL</sub> is the OCT resistance value at power-up.
- $\Delta T$  is the variation of temperature with respect to the temperature at power up.
- $\Delta V$  is the variation of voltage with respect to the V<sub>CCIO</sub> at power up.
- dR/dT is the percentage change of R<sub>SCAL</sub> with temperature.
- dR/dV is the percentage change of  $R_{SCAL}$  with voltage.



### Pin Capacitance

## Table 11: Pin Capacitance for Arria 10 Devices—Preliminary

| Symbol                 | Description                                                  | Value | Unit |
|------------------------|--------------------------------------------------------------|-------|------|
| C <sub>IO_COLUMN</sub> | Input capacitance on column I/O pins                         | 2.5   | pF   |
| C <sub>OUTFB</sub>     | Input capacitance on dual-purpose clock output/feedback pins | 2.5   | pF   |

#### Internal Weak Pull-Up Resistor

All I/O pins, except configuration, test, and JTAG pins, have an option to enable weak pull-up.

### Table 12: Internal Weak Pull-Up Resistor Values for Arria 10 Devices—Preliminary

| Symbol   | Description                                                 | Condition (V) <sup>(16)</sup> | Value <sup>(17)</sup> | Unit |
|----------|-------------------------------------------------------------|-------------------------------|-----------------------|------|
|          |                                                             | $V_{CCIO} = 3.0 \pm 5\%$      | 25                    | kΩ   |
|          |                                                             | $V_{CCIO} = 2.5 \pm 5\%$      | 25                    | kΩ   |
|          | Value of the I/O pin pull-up resistor before and during     | $V_{CCIO} = 1.8 \pm 5\%$      | 25                    | kΩ   |
| $R_{PU}$ | configuration, as well as user mode if you have enabled the | $V_{CCIO} = 1.5 \pm 5\%$      | 25                    | kΩ   |
|          | programmable pull-up resistor option.                       | $V_{CCIO} = 1.35 \pm 5\%$     | 25                    | kΩ   |
|          |                                                             | $V_{CCIO} = 1.25 \pm 5\%$     | 25                    | kΩ   |
|          |                                                             | $V_{CCIO} = 1.2 \pm 5\%$      | 25                    | kΩ   |

#### **Related Information**

### Arria 10 Device Family Pin Connection Guidelines

Provides more information about the pins that support internal weak pull-up and internal weak pull-down features.





 $<sup>^{(16)}</sup>$  Pin pull-up resistance values may be lower if an external source drives the pin higher than  $V_{CCIO}$ .

 $<sup>^{(17)}</sup>$  Valid with ±10% tolerances to cover changes over PVT.

#### I/O Standard Specifications 15

## I/O Standard Specifications

Tables in this section list the input voltage ( $V_{IH}$  and  $V_{IL}$ ), output voltage ( $V_{OH}$  and  $V_{OL}$ ), and current drive characteristics ( $I_{OH}$  and  $I_{OL}$ ) for various I/O standards supported by Arria 10 devices.

For minimum voltage values, use the minimum V<sub>CCIO</sub> values. For maximum voltage values, use the maximum V<sub>CCIO</sub> values.

You must perform timing closure analysis to determine the maximum achievable frequency for general purpose I/O standards.

#### **Related Information**

**Recommended Operating Conditions** on page 4

#### Single-Ended I/O Standards Specifications

## Table 13: Single-Ended I/O Standards Specifications for Arria 10 Devices—Preliminary

| I/O Standard    |       | V <sub>CCIO</sub> (V) |         |      | V <sub>IL</sub> (V)    | V <sub>IH</sub>        | (V)              | V <sub>OL</sub> (V) V <sub>OH</sub> (V) |                          | I <sub>OL</sub> <sup>(18)</sup> | I <sub>OH</sub> <sup>(18)</sup> (mA) |
|-----------------|-------|-----------------------|---------|------|------------------------|------------------------|------------------|-----------------------------------------|--------------------------|---------------------------------|--------------------------------------|
|                 | Min   | Тур                   | Тур Мах |      | Мах                    | Min Max                |                  | Мах                                     | Min                      | (mA)                            | IOH ( (IIIA)                         |
| 3.0-V<br>LVTTL  | 2.85  | 3                     | 3.15    | -0.3 | 0.8                    | 1.7                    | 3.3              | 0.4                                     | 2.4                      | 2                               | -2                                   |
| 3.0-V<br>LVCMOS | 2.85  | 3                     | 3.15    | -0.3 | 0.8                    | 1.7                    | 3.3              | 0.2                                     | V <sub>CCIO</sub> – 0.2  | 0.1                             | -0.1                                 |
| 2.5 V           | 2.375 | 2.5                   | 2.625   | -0.3 | 0.7                    | 1.7                    | 3.3              | 0.4                                     | 2                        | 1                               | -1                                   |
| 1.8 V           | 1.71  | 1.8                   | 1.89    | -0.3 | $0.35 \times V_{CCIO}$ | $0.65 \times V_{CCIO}$ | $V_{CCIO} + 0.3$ | 0.45                                    | V <sub>CCIO</sub> – 0.45 | 2                               | -2                                   |
| 1.5 V           | 1.425 | 1.5                   | 1.575   | -0.3 | $0.35 \times V_{CCIO}$ | $0.65 \times V_{CCIO}$ | $V_{CCIO} + 0.3$ | $0.25 \times V_{CCIO}$                  | $0.75 \times V_{CCIO}$   | 2                               | -2                                   |
| 1.2 V           | 1.14  | 1.2                   | 1.26    | -0.3 | $0.35 \times V_{CCIO}$ | $0.65 \times V_{CCIO}$ | $V_{CCIO} + 0.3$ | $0.25 \times V_{CCIO}$                  | $0.75 \times V_{CCIO}$   | 2                               | -2                                   |



<sup>&</sup>lt;sup>(18)</sup> To meet the I<sub>OL</sub> and I<sub>OH</sub> specifications, you must set the current strength settings accordingly. For example, to meet the 3.0-V LVTTL specification (2 mA), you should set the current strength settings to 2 mA. Setting at lower current strength may not meet the IOI and IOH specifications in the datasheet.

#### Single-Ended SSTL, HSTL, and HSUL I/O Reference Voltage Specifications

#### Table 14: Single-Ended SSTL, HSTL, and HSUL I/O Reference Voltage Specifications for Arria 10 Devices—Preliminary

| I/O Standard           |       | V <sub>CCIO</sub> (V) |       |                        | V <sub>REF</sub> (V)  |                        | V <sub>TT</sub> (V)    |                       |                        |  |  |
|------------------------|-------|-----------------------|-------|------------------------|-----------------------|------------------------|------------------------|-----------------------|------------------------|--|--|
| I/O Standard           | Min   | Тур                   | Мах   | Min                    | Тур                   | Мах                    | Min                    | Тур                   | Max                    |  |  |
| SSTL-18<br>Class I, II | 1.71  | 1.8                   | 1.89  | 0.833                  | 0.9                   | 0.969                  | $V_{REF} - 0.04$       | V <sub>REF</sub>      | $V_{REF} + 0.04$       |  |  |
| SSTL-15<br>Class I, II | 1.425 | 1.5                   | 1.575 | $0.49 \times V_{CCIO}$ | $0.5 \times V_{CCIO}$ | $0.51 \times V_{CCIO}$ | $0.49 \times V_{CCIO}$ | $0.5 \times V_{CCIO}$ | $0.51 \times V_{CCIO}$ |  |  |
| SSTL-135               | 1.283 | 1.35                  | 1.418 | $0.49 \times V_{CCIO}$ | $0.5 \times V_{CCIO}$ | $0.51 \times V_{CCIO}$ | $0.49 \times V_{CCIO}$ | $0.5 \times V_{CCIO}$ | $0.51 \times V_{CCIO}$ |  |  |
| SSTL-125               | 1.19  | 1.25                  | 1.31  | $0.49 \times V_{CCIO}$ | $0.5 \times V_{CCIO}$ | $0.51 \times V_{CCIO}$ | $0.49 \times V_{CCIO}$ | $0.5 \times V_{CCIO}$ | $0.51 \times V_{CCIO}$ |  |  |
| SSTL-12                | 1.14  | 1.2                   | 1.26  | $0.49 \times V_{CCIO}$ | $0.5 \times V_{CCIO}$ | $0.51 \times V_{CCIO}$ | $0.49 \times V_{CCIO}$ | $0.5 \times V_{CCIO}$ | $0.51 \times V_{CCIO}$ |  |  |
| HSTL-18<br>Class I, II | 1.71  | 1.8                   | 1.89  | 0.85                   | 0.9                   | 0.95                   |                        | $V_{CCIO}/2$          | _                      |  |  |
| HSTL-15<br>Class I, II | 1.425 | 1.5                   | 1.575 | 0.68                   | 0.75                  | 0.9                    |                        | $V_{\rm CCIO}/2$      | _                      |  |  |
| HSTL-12<br>Class I, II | 1.14  | 1.2                   | 1.26  | $0.47 \times V_{CCIO}$ | $0.5 \times V_{CCIO}$ | $0.53 \times V_{CCIO}$ | _                      | V <sub>CCIO</sub> /2  | _                      |  |  |
| HSUL-12                | 1.14  | 1.2                   | 1.3   | $0.49 \times V_{CCIO}$ | $0.5 \times V_{CCIO}$ | $0.51 \times V_{CCIO}$ |                        |                       | _                      |  |  |
| POD12                  | 1.16  | 1.2                   | 1.24  | $0.69 \times V_{CCIO}$ | $0.7 \times V_{CCIO}$ | $0.71 \times V_{CCIO}$ |                        | V <sub>CCIO</sub>     |                        |  |  |



## Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications

| I/O Standard        | ١     | / <sub>IL(DC)</sub> (V) | V <sub>IH(D</sub>        | <sub>C)</sub> (V)        | V <sub>IL(AC)</sub> (V)  | V <sub>IH(AC)</sub> (V)  | V <sub>OL</sub> (V)     | V <sub>OH</sub> (V)     | I <sub>OL</sub> <sup>(19)</sup> | I <sub>OH</sub> <sup>(19)</sup> |
|---------------------|-------|-------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------------------|-------------------------|---------------------------------|---------------------------------|
| I/O Stanuaru        | Min   | Мах                     | Min                      | Мах                      | Мах                      | Min                      | Мах                     | Min                     | (mA)                            | (mA)                            |
| SSTL-18<br>Class I  | -0.3  | V <sub>REF</sub> -0.125 | V <sub>REF</sub> + 0.125 | $V_{CCIO} + 0.3$         | V <sub>REF</sub> – 0.25  | V <sub>REF</sub> + 0.25  | V <sub>TT</sub> – 0.603 | V <sub>TT</sub> + 0.603 | 6.7                             | -6.7                            |
| SSTL-18<br>Class II | -0.3  | V <sub>REF</sub> -0.125 | V <sub>REF</sub> + 0.125 | $V_{CCIO} + 0.3$         | V <sub>REF</sub> – 0.25  | V <sub>REF</sub> + 0.25  | 0.28                    | V <sub>CCIO</sub> –0.28 | 13.4                            | -13.4                           |
| SSTL-15<br>Class I  | _     | V <sub>REF</sub> – 0.1  | $V_{REF} + 0.1$          |                          | V <sub>REF</sub> – 0.175 | V <sub>REF</sub> + 0.175 | $0.2 \times V_{CCIO}$   | $0.8 \times V_{CCIO}$   | 8                               | -8                              |
| SSTL-15<br>Class II | _     | V <sub>REF</sub> – 0.1  | $V_{REF} + 0.1$          |                          | V <sub>REF</sub> – 0.175 | V <sub>REF</sub> + 0.175 | $0.2 \times V_{CCIO}$   | $0.8 \times V_{CCIO}$   | 16                              | -16                             |
| SSTL-135            | _     | V <sub>REF</sub> – 0.09 | V <sub>REF</sub> + 0.09  |                          | V <sub>REF</sub> – 0.16  | V <sub>REF</sub> + 0.16  | $0.2 \times V_{CCIO}$   | $0.8 \times V_{CCIO}$   | —                               | _                               |
| SSTL-125            |       | $V_{REF}$ – 0.09        | $V_{REF} + 0.09$         |                          | V <sub>REF</sub> – 0.15  | $V_{REF} + 0.15$         | $0.2 \times V_{CCIO}$   | $0.8 \times V_{CCIO}$   | —                               | —                               |
| SSTL-12             |       | V <sub>REF</sub> – 0.10 | $V_{REF} + 0.10$         |                          | V <sub>REF</sub> – 0.15  | $V_{REF} + 0.15$         | $0.2 \times V_{CCIO}$   | $0.8 \times V_{CCIO}$   | —                               | _                               |
| HSTL-18<br>Class I  | _     | $V_{REF}$ –0.1          | $V_{REF} + 0.1$          |                          | V <sub>REF</sub> – 0.2   | $V_{REF} + 0.2$          | 0.4                     | $V_{CCIO} - 0.4$        | 8                               | -8                              |
| HSTL-18<br>Class II |       | V <sub>REF</sub> – 0.1  | $V_{REF} + 0.1$          |                          | V <sub>REF</sub> – 0.2   | $V_{REF} + 0.2$          | 0.4                     | $V_{CCIO} - 0.4$        | 16                              | -16                             |
| HSTL-15<br>Class I  | _     | V <sub>REF</sub> – 0.1  | $V_{REF} + 0.1$          |                          | V <sub>REF</sub> – 0.2   | $V_{REF} + 0.2$          | 0.4                     | $V_{CCIO} - 0.4$        | 8                               | -8                              |
| HSTL-15<br>Class II |       | V <sub>REF</sub> – 0.1  | $V_{REF} + 0.1$          |                          | V <sub>REF</sub> – 0.2   | $V_{REF} + 0.2$          | 0.4                     | V <sub>CCIO</sub> -0.4  | 16                              | -16                             |
| HSTL-12<br>Class I  | -0.15 | V <sub>REF</sub> – 0.08 | V <sub>REF</sub> + 0.08  | V <sub>CCIO</sub> + 0.15 | V <sub>REF</sub> – 0.15  | V <sub>REF</sub> + 0.15  | $0.25 \times V_{CCIO}$  | $0.75 \times V_{CCIO}$  | 8                               | -8                              |

<sup>&</sup>lt;sup>(19)</sup> To meet the I<sub>OL</sub> and I<sub>OH</sub> specifications, you must set the current strength settings accordingly. For example, to meet the SSTL15CI specification (8 mA), you should set the current strength settings to 8 mA. Setting at lower current strength may not meet the I<sub>OL</sub> and I<sub>OH</sub> specifications in the datasheet.



| I/O Standard –      | ١     | V <sub>IL(DC)</sub> (V) | V <sub>IH(D</sub>       | <sub>C)</sub> (V)        | V <sub>IL(AC)</sub> (V) | V <sub>IH(AC)</sub> (V) | V <sub>OL</sub> (V)                                            | V <sub>OH</sub> (V)                                            | I <sub>OL</sub> <sup>(19)</sup> | I <sub>OH</sub> <sup>(19)</sup> |
|---------------------|-------|-------------------------|-------------------------|--------------------------|-------------------------|-------------------------|----------------------------------------------------------------|----------------------------------------------------------------|---------------------------------|---------------------------------|
|                     | Min   | Мах                     | Min Max                 |                          | Max                     | Min                     | Мах                                                            | Min                                                            | (mA)                            | (mA)                            |
| HSTL-12<br>Class II | -0.15 | V <sub>REF</sub> – 0.08 | V <sub>REF</sub> + 0.08 | V <sub>CCIO</sub> + 0.15 | V <sub>REF</sub> – 0.15 | V <sub>REF</sub> + 0.15 | $0.25 \times V_{CCIO}$                                         | $0.75 \times V_{CCIO}$                                         | 16                              | -16                             |
| HSUL-12             | _     | V <sub>REF</sub> - 0.13 | $V_{REF} + 0.13$        | _                        | V <sub>REF</sub> – 0.22 | $V_{REF} + 0.22$        | $0.1 \times V_{CCIO}$                                          | $0.9 \times V_{CCIO}$                                          |                                 | —                               |
| POD12               | -0.15 | V <sub>REF</sub> – 0.08 | V <sub>REF</sub> + 0.08 | V <sub>CCIO</sub> + 0.15 | V <sub>REF</sub> – 0.15 | V <sub>REF</sub> + 0.15 | $\begin{array}{c} (0.7-0.15)\times\\ V_{\rm CCIO} \end{array}$ | $\begin{array}{c} (0.7+0.15)\times\\ V_{\rm CCIO} \end{array}$ |                                 | _                               |

Differential SSTL I/O Standards Specifications

## Table 16: Differential SSTL I/O Standards Specifications for Arria 10 Devices—Preliminary

| I/O Standard           |       | V <sub>CCIO</sub> (V) |       | V <sub>SWING(DC)</sub> (V) |                  | V <sub>SWING</sub>                            | <sub>(AC)</sub> (V)                           | V <sub>IX(AC)</sub> (V)         |                      |                             |  |  |
|------------------------|-------|-----------------------|-------|----------------------------|------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------|----------------------|-----------------------------|--|--|
|                        | Min   | Тур                   | Max   | Min                        | Мах              | Min                                           | Мах                                           | Min                             | Тур                  | Мах                         |  |  |
| SSTL-18<br>Class I, II | 1.71  | 1.8                   | 1.89  | 0.25                       | $V_{CCIO} + 0.6$ | 0.5                                           | $V_{CCIO} + 0.6$                              | V <sub>CCIO</sub> /2 –<br>0.175 | _                    | $V_{\rm CCIO}/2 + 0.175$    |  |  |
| SSTL-15<br>Class I, II | 1.425 | 1.5                   | 1.575 | 0.2                        | (20)             | 2(V <sub>IH(AC)</sub> –<br>V <sub>REF</sub> ) | 2(V <sub>REF</sub> –<br>V <sub>IL(AC)</sub> ) | V <sub>CCIO</sub> /2 –<br>0.15  | _                    | V <sub>CCIO</sub> /2 + 0.15 |  |  |
| SSTL-135               | 1.283 | 1.35                  | 1.45  | 0.18                       | (20)             | 2(V <sub>IH(AC)</sub> –<br>V <sub>REF</sub> ) | 2(V <sub>IL(AC)</sub> –<br>V <sub>REF</sub> ) | V <sub>CCIO</sub> /2 –<br>0.15  | V <sub>CCIO</sub> /2 | $V_{\rm CCIO}/2 + 0.15$     |  |  |
| SSTL-125               | 1.19  | 1.25                  | 1.31  | 0.18                       | (20)             | 2(V <sub>IH(AC)</sub> –<br>V <sub>REF</sub> ) | 2(V <sub>IL(AC)</sub> –<br>V <sub>REF</sub> ) | V <sub>CCIO</sub> /2 –<br>0.15  | V <sub>CCIO</sub> /2 | $V_{CCIO}/2 + 0.15$         |  |  |
| SSTL-12                | 1.14  | 1.2                   | 1.26  | 0.16                       | (20)             | 2(V <sub>IH(AC)</sub> –<br>V <sub>REF</sub> ) | 2(V <sub>IL(AC)</sub> –<br>V <sub>REF</sub> ) | V <sub>REF</sub> – 0.15         | V <sub>CCIO</sub> /2 | V <sub>REF</sub> + 0.15     |  |  |
| POD12                  | 1.16  | 1.2                   | 1.24  | 0.16                       | —                | 0.3                                           | _                                             | V <sub>REF</sub> - 0.08         | —                    | V <sub>REF</sub> + 0.08     |  |  |

<sup>(19)</sup> To meet the I<sub>OL</sub> and I<sub>OH</sub> specifications, you must set the current strength settings accordingly. For example, to meet the SSTL15CI specification (8 mA), you should set the current strength settings to 8 mA. Setting at lower current strength may not meet the I<sub>OL</sub> and I<sub>OH</sub> specifications in the datasheet.

 $^{(20)}$  The maximum value for  $V_{SWING(DC)}$  is not defined. However, each single-ended signal needs to be within the respective single-ended limits ( $V_{IH(DC)}$  and  $V_{IL(DC)}$ ).



#### Differential HSTL and HSUL I/O Standards Specifications

| I/O Standard           | V <sub>CCIO</sub> (V) |     | V <sub>DIF(DC)</sub> (V) |                                               | V <sub>DIF(AC)</sub> (V)                      |                                               | V <sub>IX(AC)</sub> (V)                       |                                                                     |                            | V <sub>CM(DC)</sub> (V)      |                          |                          |                           |
|------------------------|-----------------------|-----|--------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------|----------------------------|------------------------------|--------------------------|--------------------------|---------------------------|
|                        | Min                   | Тур | Max                      | Min                                           | Max                                           | Min                                           | Max                                           | Min                                                                 | Тур                        | Max                          | Min                      | Тур                      | Max                       |
| HSTL-18<br>Class I, II | 1.71                  | 1.8 | 1.89                     | 0.2                                           | _                                             | 0.4                                           |                                               | 0.78                                                                | _                          | 1.12                         | 0.78                     | _                        | 1.12                      |
| HSTL-15<br>Class I, II | 1.425                 | 1.5 | 1.575                    | 0.2                                           | _                                             | 0.4                                           | _                                             | 0.68                                                                | _                          | 0.9                          | 0.68                     | _                        | 0.9                       |
| HSTL-12<br>Class I, II | 1.14                  | 1.2 | 1.26                     | 0.16                                          | $V_{CCIO} + 0.3$                              | 0.3                                           | $V_{CCIO} + 0.48$                             | _                                                                   | $0.5 \times V_{ m CCIO}$   | —                            | $0.4 \times V_{ m CCIO}$ | $0.5 \times V_{ m CCIO}$ | $0.6 \times V_{\rm CCIO}$ |
| HSUL-12                | 1.14                  | 1.2 | 1.3                      | 2(V <sub>IH(DC)</sub><br>– V <sub>REF</sub> ) | 2(V <sub>REF</sub> –<br>V <sub>IH(DC)</sub> ) | 2(V <sub>IH(AC)</sub><br>– V <sub>REF</sub> ) | 2(V <sub>REF</sub> –<br>V <sub>IH(AC)</sub> ) | $\begin{array}{c} 0.5 \times \\ V_{\rm CCIO} - \\ 0.12 \end{array}$ | 0.5 ×<br>V <sub>CCIO</sub> | $0.5 \times V_{CCIO} + 0.12$ | $0.4 \times V_{CCIO}$    | $0.5 \times V_{CCIO}$    | $0.6 \times V_{CCIO}$     |

## Table 17: Differential HSTL and HSUL I/O Standards Specifications for Arria 10 Devices—Preliminary

## **Differential I/O Standards Specifications**

## Table 18: Differential I/O Standards Specifications for Arria 10 Devices—Preliminary

Differential inputs are powered by V<sub>CCPT</sub> which requires 1.8 V.

| I/O Standard - |        | V <sub>CCIO</sub> (V)                                                                                                                                                                                                                                            |     |     | V <sub>ID</sub> (mV) <sup>(21)</sup> |     |     | V <sub>ICM(DC)</sub> (V) |     |     | V <sub>OD</sub> (V) <sup>(22)</sup> |     |     | V <sub>OCM</sub> (V) <sup>(22)</sup> |     |  |
|----------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|--------------------------------------|-----|-----|--------------------------|-----|-----|-------------------------------------|-----|-----|--------------------------------------|-----|--|
|                | Min    | Тур                                                                                                                                                                                                                                                              | Max | Min | Condition                            | Max | Min | Condition                | Max | Min | Тур                                 | Max | Min | Тур                                  | Max |  |
| PCML           | Transn | Transmitter, receiver, and input reference clock pins of high-speed transceivers use the CML I/O standard. For transmitter, receiver, and reference clock I/O pin specifications, refer to Transceiver Specifications for Arria 10 GX, SX, and GT Devices table. |     |     |                                      |     |     |                          |     |     |                                     |     |     |                                      |     |  |

(22)  $R_{\rm L}$  range:  $90 \le R_{\rm L} \le 110 \ \Omega$ .

Arria 10 Device Datasheet



 $<sup>^{(21)}</sup>$  The minimum V<sub>ID</sub> value is applicable over the entire common mode range, V<sub>CM</sub>.

| I/O Standard                       |                                             |     | V <sub>ID</sub> (mV) <sup>(21)</sup> |      |                             | V <sub>ICM(DC)</sub> (V) |     | V <sub>OD</sub> (V) <sup>(22)</sup> |       | 2)    | V <sub>OCM</sub> (V) <sup>(22)</sup> |     |       |      |       |
|------------------------------------|---------------------------------------------|-----|--------------------------------------|------|-----------------------------|--------------------------|-----|-------------------------------------|-------|-------|--------------------------------------|-----|-------|------|-------|
| 1/O Standard                       | Min                                         | Тур | Мах                                  | Min  | Condition                   | Max                      | Min | Condition                           | Max   | Min   | Тур                                  | Max | Min   | Тур  | Max   |
| LVDS <sup>(23)</sup>               | $VDS^{(23)}$ 1.71 1.8 1.89 100 $V_{CM} = -$ | 0   | D <sub>MAX</sub><br>≤700 Mbps        | 1.85 | 0.247                       |                          | 0.6 | 1.125                               | 1.25  | 1.375 |                                      |     |       |      |       |
|                                    | 1.71                                        | 1.0 | 1.09                                 | 100  | 1.25 V                      |                          | 1   | D <sub>MAX</sub> ><br>700 Mbps      | 1.6   | 0.247 |                                      | 0.0 | 1.123 | 1.25 | 1.373 |
| RSDS (HIO)<br>(24)                 | 1.71                                        | 1.8 | 1.89                                 | 100  | V <sub>CM</sub> =<br>1.25 V | —                        | 0.3 | _                                   | 1.4   | 0.1   | 0.2                                  | 0.6 | 0.5   | 1.2  | 1.4   |
| Mini-LVDS<br>(HIO) <sup>(25)</sup> | 1.71                                        | 1.8 | 1.89                                 | 200  | _                           | 600                      | 0.4 | _                                   | 1.325 | 0.25  |                                      | 600 | 1     | 1.2  | 1.4   |
| LVPECL <sup>(26)</sup>             | 1.71                                        | 1.8 | 1.89                                 | 300  |                             |                          | 0.6 | D <sub>MAX</sub><br>≤700 Mbps       | 1.7   |       |                                      |     |       |      |       |
| LVIECL                             | 1./1                                        | 1.0 | 1.09                                 | 500  |                             |                          | 1   | D <sub>MAX</sub> ><br>700 Mbps      | 1.6   |       |                                      |     |       |      |       |

#### **Related Information**

Transceiver Specifications for Arria 10 GX, SX, and GT Devices on page 28

Provides the specifications for transmitter, receiver, and reference clock I/O pin.

# **Switching Characteristics**

This section provides the performance characteristics of Arria 10 core and periphery blocks for extended grade devices.



 $<sup>^{(21)}\,</sup>$  The minimum  $V_{ID}$  value is applicable over the entire common mode range,  $V_{CM}.$ 

<sup>&</sup>lt;sup>(22)</sup>  $R_L$  range:  $90 \le R_L \le 110 \Omega$ .

<sup>&</sup>lt;sup>(23)</sup> For optimized LVDS receiver performance, the receiver voltage input range must be within 1.0 V to 1.6 V for data rates above 700 Mbps and 0 V to 1.85 V for data rates below 700 Mbps.

<sup>&</sup>lt;sup>(24)</sup> For optimized RSDS receiver performance, the receiver voltage input range must be within 0.3 V to 1.4 V.

<sup>&</sup>lt;sup>(25)</sup> For optimized Mini-LVDS receiver performance, the receiver voltage input range must be within 0.4 V to 1.325 V.

<sup>&</sup>lt;sup>(26)</sup> For optimized LVPECL receiver performance, the receiver voltage input range must be within 0.85 V to 1.75 V for data rates above 700 Mbps and 0.45 V to 1.95 V for data rates below 700 Mbps.

# **Transceiver Performance Specifications**

## Transceiver Performance for Arria 10 GX/SX Devices

#### Table 19: Transmitter and Receiver Data Rate Performance—Preliminary

| Symbol/Description           | Condition                                                                   | Transceiver<br>Speed Grade 1 | Transceiver<br>Speed Grade 2 | Transceiver<br>Speed Grade 3 | Transceiver<br>Speed Grade 4 | Transceiver<br>Speed Grade 5<br>(27) | Unit |
|------------------------------|-----------------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--------------------------------------|------|
| Chip-to-Chip <sup>(28)</sup> | Maximum data rate<br>$V_{CCR\_GXB} = V_{CCT\_GXB}$<br>= 1.03 V              | 17.4                         | 15                           | 14.2                         | 12.5                         | 8                                    | Gbps |
|                              | Maximum data rate<br>$V_{CCR\_GXB} = V_{CCT\_GXB}$<br>= 0.9 V               | 11.3                         | 11.3                         | 11.3                         | 11.3                         | 8                                    | Gbps |
|                              | TX Minimum Data<br>Rate                                                     |                              | Mbps                         |                              |                              |                                      |      |
|                              | RX Minimum Data<br>Rate                                                     |                              |                              | 1.0 (29)                     |                              |                                      | Gbps |
| Backplane <sup>(28)</sup>    | Maximum data rate<br>V <sub>CCR_GXB</sub> = V <sub>CCT_GXB</sub><br>= 1.0 V | 16                           | 14.2                         | 12.5                         | 10.3125                      | 6.5536                               | Gbps |

Arria 10 Device Datasheet



<sup>&</sup>lt;sup>(27)</sup> Transceiver speed grade 5 supports PCIe Gen3.

<sup>&</sup>lt;sup>(28)</sup> Backplane applications assume advanced equalization circuitry, such as decision feedback equalization (DFE), is enabled to compensate for signal impairments. Chip-to-chip links are assumed to be applications with short reach channels that do not require DFE.

<sup>&</sup>lt;sup>(29)</sup> Arria 10 transceivers can support data rates down to 125 Mbps with over sampling.

#### 22 Transceiver Performance for Arria 10 GX/SX Devices

| Symbol/Description | Condition                                                     | Transceiver<br>Speed Grade 1 | Transceiver<br>Speed Grade 2 | Transceiver<br>Speed Grade 3 | Transceiver<br>Speed Grade 4 | Transceiver<br>Speed Grade 5<br>(27) | Unit |
|--------------------|---------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--------------------------------------|------|
|                    | Maximum data rate<br>$V_{CCR\_GXB} = V_{CCT\_GXB}$<br>= 0.9 V | 10.3125                      | 10.3125                      | 10.3125                      | 10.3125                      | 6.5536                               | Gbps |
|                    | TX Minimum Data<br>Rate                                       |                              | Mbps                         |                              |                              |                                      |      |
|                    | RX Minimum Data<br>Rate                                       |                              |                              | 1.0 (29)                     |                              |                                      | Gbps |

## Table 20: ATX PLL Performance—Preliminary

| Symbol/Descrip-<br>tion          | Condition            | Transceiver<br>Speed Grade 1 | Transceiver<br>Speed Grade 2 | Transceiver<br>Speed Grade 3 | Transceiver<br>Speed Grade 4 | Transceiver<br>Speed Grade 5 | Unit |  |
|----------------------------------|----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------|--|
| Supported<br>Output<br>Frequency | Maximum<br>Frequency | 8.7 7.5 7.1 6.25 4           |                              |                              |                              |                              | GHz  |  |
|                                  | Minimum<br>Frequency |                              | 305.5                        |                              |                              |                              |      |  |

## Table 21: Fractional PLL Performance—Preliminary

| Symbol/<br>Description | Condition            | Transceiver<br>Speed Grade 1 | Transceiver<br>Speed Grade 2 | Transceiver<br>Speed Grade 3 | Transceiver<br>Speed Grade 4 | Transceiver<br>Speed Grade 5 | Unit |  |  |
|------------------------|----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------|--|--|
| Supported              | Maximum<br>Frequency | 6.25                         | 6.25                         | 6.25                         | 6.25                         | 4                            | GHz  |  |  |
| Output<br>Frequency    | Minimum<br>Frequency |                              | 305.5                        |                              |                              |                              |      |  |  |

(27) Transceiver speed grade 5 supports PCIe Gen3.



## Table 22: CMU PLL Performance—Preliminary

| Symbol/<br>Description | Condition            | Transceiver<br>Speed Grade 1 | Transceiver<br>Speed Grade 2 | Transceiver<br>Speed Grade 3 | Transceiver<br>Speed Grade 4 | Transceiver<br>Speed Grade 5 | Unit |  |
|------------------------|----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------|--|
| Supported<br>Output    | Maximum<br>Frequency | 5.15625                      | 5.15625 5.15625 5.15625 4    |                              |                              |                              |      |  |
| Frequency              | Minimum<br>Frequency |                              | MHz                          |                              |                              |                              |      |  |

**Related Information** 

**Transceiver Power Supply Operating Conditions** on page 6

## High-Speed Serial Transceiver-Fabric Interface Performance for Arria 10 GX/SX Devices

## Table 23: High-Speed Serial Transceiver-Fabric Interface Performance for Arria 10 GX/SX Devices—Preliminary

|                                |                        | C              |                    |             |                     |      |
|--------------------------------|------------------------|----------------|--------------------|-------------|---------------------|------|
| Symbol/Description             | Condition (V)          | -E1M /<br>-I1M | -E1L / -E1S / -I1L | -E2L / -I2L | -E3S /<br>-I3S / M3 | Unit |
| 20-bit interface - FIFO        | V <sub>CC</sub> = 0.9  | 516            | 516                | 400         | 400                 | MHz  |
| 20-bit interface - Registered  | V <sub>CC</sub> = 0.9  | 491            | 491                | 400         | 400                 | MHz  |
| 32-bit interface - FIFO        | V <sub>CC</sub> = 0.9  | 441            | 441                | 404         | 335                 | MHz  |
| 32-bit interface - Registered  | V <sub>CC</sub> = 0.9  | 441            | 441                | 404         | 335                 | MHz  |
| 64-bit interface - FIFO        | V <sub>CC</sub> = 0.9  | 272            | 272                | 234         | 222                 | MHz  |
| 64-bit interface - Registered  | V <sub>CC</sub> = 0.9  | 272            | 272                | 234         | 222                 | MHz  |
| PCIe Gen3 HIP-Fabric interface | V <sub>CC</sub> = 0.9  | 300            | 300                | 250         | 250                 | MHz  |
| 20-bit interface - FIFO        | $V_{\rm CC} = 0.83$    | 400            | _                  |             |                     | MHz  |
| 20-bit interface - Registered  | V <sub>CC</sub> = 0.83 | 400            |                    | _           |                     | MHz  |
| 32-bit interface - FIFO        | V <sub>CC</sub> = 0.83 | 335            | _                  | —           | _                   | MHz  |



|                                |                        | C              |                    |             |                     |      |
|--------------------------------|------------------------|----------------|--------------------|-------------|---------------------|------|
| Symbol/Description             | Condition (V)          | -E1M /<br>-I1M | -E1L / -E1S / -I1L | -E2L / -I2L | -E3S /<br>-I3S / M3 | Unit |
| 32-bit interface - Registered  | V <sub>CC</sub> = 0.83 | 335            | —                  | _           | _                   | MHz  |
| 64-bit interface - FIFO        | V <sub>CC</sub> = 0.83 | 222            |                    |             |                     | MHz  |
| 64-bit interface - Registered  | V <sub>CC</sub> = 0.83 | 222            |                    |             |                     | MHz  |
| PCIe Gen3 HIP-Fabric interface | V <sub>CC</sub> = 0.83 | 250            | _                  | _           | _                   | MHz  |





## **Transceiver Performance for Arria 10 GT Devices**

#### Table 24: Transmitter and Receiver Data Rate Performance—Preliminary

| Symbol/Description           | Condition                               | Transceiver<br>Speed Grade 2 | Transceiver<br>Speed Grade 3 | Transceiver<br>Speed Grade 4 | Unit |      |  |
|------------------------------|-----------------------------------------|------------------------------|------------------------------|------------------------------|------|------|--|
|                              | Maximum data rate                       | GT Channel                   | 28.3/28.1 (32)               | 26                           | 20   | Gbps |  |
|                              | $V_{CCR\_GXB} = V_{CCT\_GXB} = 1.11$ V  | GX Channel                   | 17.4                         | 15                           | 15   | Gbps |  |
|                              | Maximum data rate                       | GT Channel                   |                              |                              |      |      |  |
|                              | $V_{CCR_GXB} = V_{CCT_GXB} = 1.03$<br>V | GX Channel                   | 15                           | 14.2                         | 12.5 | Gbps |  |
| Chip-to-chip <sup>(30)</sup> | Maximum data rate                       | GT Channel                   | 11.0                         | 11.2                         | 11.2 |      |  |
|                              | $V_{CCR_{GXB}} = V_{CCT_{GXB}} = 0.9 V$ | GX Channel                   | 11.3                         | 11.3                         | 11.3 | Gbps |  |
|                              | TX Minimum data rate                    | GT Channel                   |                              | 611                          |      | Mbps |  |
|                              |                                         | GX Channel                   |                              | 011                          |      | Mops |  |
|                              | RX Minimum data rate                    | GT Channel                   |                              | 1.0 (33)                     |      | Chrs |  |
|                              |                                         | GX Channel                   |                              | 1.0 (33)                     |      | Gbps |  |

<sup>(31)</sup> GT channels are only available when  $V_{CCT GXB} = 1.1 \text{ V}$  and  $V_{CCR_GXB} = 1.1 \text{ V}$ .

Arria 10 Device Datasheet



<sup>&</sup>lt;sup>(30)</sup> Backplane applications assume advanced equalization circuitry, such as decision feedback equalization (DFE), is enabled to compensate for signal impairments. Chip-to-chip links are assumed to be applications with short reach channels that do not require DFE.

<sup>&</sup>lt;sup>(32)</sup> To achieve 28.3 Gbps, you must use a -1 core speed grade and a -2 transceiver speed grade device configuration. To achieve 28.1 Gbps, you must use a -2 core speed grade and a -2 transceiver speed grade device configuration.

<sup>&</sup>lt;sup>(33)</sup> Arria 10 transceivers can support data rates down to 125 Mbps with over sampling.

| Symbol/Description        | Condition                               |            | Transceiver<br>Speed Grade 2 | Transceiver<br>Speed Grade 3 | Transceiver<br>Speed Grade 4 | Unit  |
|---------------------------|-----------------------------------------|------------|------------------------------|------------------------------|------------------------------|-------|
|                           | Maximum data rate                       | GT Channel |                              |                              |                              |       |
|                           | $V_{CCR_GXB} = V_{CCT_GXB} = 1.11$<br>V | GX Channel | 17.4                         | 14.2                         | 14.2                         | Gbps  |
|                           | Maximum data rate                       | GT Channel |                              |                              |                              |       |
|                           | $V_{CCR_GXB} = V_{CCT_GXB} = 1.03$<br>V | GX Channel | 14.2                         | 12.5                         | 10.3125                      | Gbps  |
| Backplane <sup>(30)</sup> | Maximum data rate                       | GT Channel | 10 2125                      | 10 2125                      | 10 2125                      |       |
|                           | $V_{CCR_{GXB}} = V_{CCT_{GXB}} = 0.9 V$ | GX Channel | 10.3125                      | 10.3125                      | 10.3125                      | Gbps  |
|                           | TX Minimum data rate                    | GT Channel |                              | 611                          |                              | Mbps  |
|                           |                                         | GX Channel |                              | 011                          |                              | 11005 |
|                           | RX Minimum data rate                    | GT Channel | 1.0 (33)                     |                              |                              | Gbps  |
|                           |                                         | GX Channel |                              | 1.0                          |                              | Gops  |

## Table 25: ATX PLL Performance—Preliminary

| Symbol/Description | Condition         | Transceiver Speed<br>Grade 2 | Transceiver Speed<br>Grade 3 | Transceiver Speed<br>Grade 4 | Unit |
|--------------------|-------------------|------------------------------|------------------------------|------------------------------|------|
| Supported Output   | Maximum frequency | 14.15                        | 13                           | 10                           | GHz  |
| Frequency          | Minimum frequency |                              | MHz                          |                              |      |

## Table 26: Fractional PLL Performance—Preliminary

| Symbol/Description | Condition         | Transceiver Speed<br>Grade 2 | Transceiver Speed<br>Grade 3 | Transceiver Speed<br>Grade 4 | Unit |
|--------------------|-------------------|------------------------------|------------------------------|------------------------------|------|
| Supported Output   | Maximum frequency |                              | 6.25                         |                              | GHz  |
| Frequency          | Minimum frequency |                              | 305.5                        |                              | MHz  |



## Table 27: CMU PLL Performance—Preliminary

| Symbol/Description          | Condition         | Transceiver Speed<br>Grade 2 | Transceiver Speed<br>Grade 3 | Transceiver Speed<br>Grade 4 | Unit |
|-----------------------------|-------------------|------------------------------|------------------------------|------------------------------|------|
| Supported Output            | Maximum frequency | 5.15625                      | 5.15625                      | 5.15625                      | GHz  |
| Frequency Minimum frequency |                   | 305.5                        |                              |                              | MHz  |

**Related Information** 

Transceiver Power Supply Operating Conditions on page 6

## High-Speed Serial Transceiver-Fabric Interface Performance for Arria 10 GT Devices

#### Table 28: High-Speed Serial Transceiver-Fabric Interface Performance for Arria 10 GT Devices—Preliminary

| Symbol/Description             | Condition (V)         | Core Spe | Unit |     |     |
|--------------------------------|-----------------------|----------|------|-----|-----|
| Symbol/Description             |                       | -1       | -2   | -3  | Ont |
| 20-bit interface - FIFO        | $V_{\rm CC} = 0.9$    | 516      | 400  | 400 | MHz |
| 20-bit interface - Registered  | V <sub>CC</sub> = 0.9 | 491      | 400  | 400 | MHz |
| 32-bit interface - FIFO        | V <sub>CC</sub> = 0.9 | 441      | 404  | 335 | MHz |
| 32-bit interface - Registered  | V <sub>CC</sub> = 0.9 | 441      | 404  | 335 | MHz |
| 64-bit interface - FIFO        | V <sub>CC</sub> = 0.9 | 439      | 407  | 313 | MHz |
| 64-bit interface - Registered  | V <sub>CC</sub> = 0.9 | 439      | 407  | 313 | MHz |
| PCIe Gen3 HIP-Fabric interface | V <sub>CC</sub> = 0.9 | 300      | 250  | 250 | MHz |



## Transceiver Specifications for Arria 10 GX, SX, and GT Devices

## Table 29: Reference Clock Specifications—Preliminary

| Symbol/Description                            | Condition                                     | Transceive | r Speed Grades 1, 2 | 2, 3, 4, and 5    | Unit     |
|-----------------------------------------------|-----------------------------------------------|------------|---------------------|-------------------|----------|
| Symbol/Description                            | Condition                                     | Min        | Тур                 | Мах               |          |
| Supported I/O Standards                       | Dedicated reference clock pin                 |            | CML, Differential   | LVPECL, LVDS, a   | and HCSL |
|                                               | RX reference clock pin                        |            | CML, Differer       | ntial LVPECL, and | LVDS     |
| Input Reference Clock Frequency (CMU<br>PLL)  |                                               | 61         |                     | 800               | MHz      |
| Input Reference Clock Frequency (ATX PLL)     |                                               | 100        |                     | 800               | MHz      |
| Input Reference Clock Frequency (fPLL<br>PLL) |                                               | 20         |                     | 800               | MHz      |
| Rise time                                     | 20% to 80%                                    | _          |                     | 400               | ps       |
| Fall time                                     | 80% to 20%                                    |            |                     | 400               | ps       |
| Duty cycle                                    | —                                             | 45         | _                   | 55                | %        |
| Spread-spectrum modulating clock frequency    | PCI Express <sup>®</sup> (PCIe <sup>®</sup> ) | 30         | _                   | 33                | kHz      |
| Spread-spectrum downspread                    | PCIe                                          | _          | 0 to -0.5           | _                 | %        |
| On-chip termination resistors                 | —                                             | _          | 100                 |                   | Ω        |
| Absolute V <sub>MAX</sub>                     | Dedicated reference clock pin                 | —          | _                   | 1.6               | V        |
|                                               | RX reference clock pin                        | _          | _                   | 1.2               | V        |
| Absolute V <sub>MIN</sub>                     | —                                             | -0.4       | —                   | —                 | V        |
| Peak-to-peak differential input voltage       | —                                             | 200        | _                   | 1600              | mV       |



A10-DATASHEET 2015.05.08

| Symbol/Description                                          | Condition                                     | Transceiver Speed Grades 1, 2, 3, 4, and 5 |           |      | Unit     |
|-------------------------------------------------------------|-----------------------------------------------|--------------------------------------------|-----------|------|----------|
| Symbol/Description                                          |                                               | Min                                        | Тур       | Мах  | Ont      |
|                                                             | $V_{CCR\_GXB} = 0.9 V$                        |                                            | 600       | _    | mV       |
| V <sub>ICM</sub> (AC coupled)                               | $V_{CCR_{GXB}} = 1.03 V$                      |                                            | 700       |      | mV       |
|                                                             | $V_{CCR\_GXB} = 1.11 V$                       |                                            | 700       |      | mV       |
| V <sub>ICM</sub> (DC coupled)                               | HCSL I/O standard for<br>PCIe reference clock | 250                                        |           | 550  | mV       |
|                                                             | 100 Hz                                        |                                            |           | -70  | dBc/Hz   |
|                                                             | 1 kHz                                         |                                            |           | -90  | dBc/Hz   |
| Transmitter REFCLK Phase Noise (622<br>MHz) <sup>(34)</sup> | 10 kHz                                        |                                            |           | -100 | dBc/Hz   |
|                                                             | 100 kHz                                       |                                            |           | -110 | dBc/Hz   |
|                                                             | ≥1 MHz                                        | _                                          | _         | -126 | dBc/Hz   |
| Transmitter REFCLK Phase Jitter (100<br>MHz)                | 10 kHz to 1.5 MHz<br>(PCIe)                   | _                                          | _         | 3    | ps (rms) |
| R <sub>REF</sub>                                            | -                                             | —                                          | 2.0 k ±1% | _    | Ω        |

## Table 30: Transceiver Clocks Specifications—Preliminary

| Symbol/Description                           | Condition                  | Transceiver Speed Grades 1, 2, 3, 4, and 5 |     |     | Unit |
|----------------------------------------------|----------------------------|--------------------------------------------|-----|-----|------|
| Symbol/Description Cor                       | Condition                  | Min                                        | Тур | Мах | Onit |
| CLKUSR pin for<br>transceiver<br>calibration | Transceiver<br>Calibration | 100                                        | —   | 125 | MHz  |



<sup>&</sup>lt;sup>(34)</sup> To calculate the REFCLK phase noise requirement at frequencies other than 622 MHz, use the following formula: REFCLK phase noise at f (MHz) = REFCLK phase noise at 622 MHz + 20\*log(f/622).

| Symbol/Description | Condition                    | Transcei | ver Speed Grades 1, 2, 3, | Unit |        |
|--------------------|------------------------------|----------|---------------------------|------|--------|
| Symbol/Description | Symbol/Description Condition | Min      | Тур                       | Мах  | . Onit |
| reconfig_clk       | Reconfiguration<br>interface | 100      | —                         | 125  | MHz    |

## Table 31: Transceiver Clock Network Maximum Data Rate Specifications

| Clock Network   | Maximum Performance |      | Channel Span | Unit                               |      |
|-----------------|---------------------|------|--------------|------------------------------------|------|
| CIOCK NELWORK   | ATX <sup>(35)</sup> | fPLL | CMU          | Channel Span                       | Onic |
| x1              | 17.4                | 12.5 | 10.3125      | 6 channels                         | Gbps |
| x6              | 17.4                | 12.5 | N/A          | 6 channels                         | Gbps |
| x6 PLL feedback | 17.4                | 12.5 | N/A          | Side-wide                          | Gbps |
| xN at 0.9 V     | 10.5                | 10.5 | N/A          | Up two banks and<br>down two banks | Gbps |
| xN at 1.03 V    | 15.0                | 12.5 | N/A          | Up two banks and<br>down two banks | Gbps |
| xN at 1.11 V    | 16.0                | 12.5 | N/A          | Up two banks and<br>down two banks | Gbps |

## Table 32: Receiver Specifications—Preliminary

| Symbol/Description         | Condition | Transceiver Speed Grades 1, 2, 3, 4, and 5                                       |     |     | Unit |
|----------------------------|-----------|----------------------------------------------------------------------------------|-----|-----|------|
| Symbol/Description         | Condition | Min                                                                              | Тур | Мах | Onic |
| Supported I/O<br>Standards | _         | High Speed Differential I/O <sup>(36)</sup> , CML, Differential LVPECL, and LVDS |     |     |      |





 <sup>(35)</sup> ATX maximum data rate support per speed grade.
 (36) High Speed Differential I/O is the dedicated I/O standard for the transmitter in Arria 10 transceivers.

A10-DATASHEET 2015.05.08

| Symbol/Description                                                                                                                       | Condition                | Transcei | ver Speed Grades 1, 2, 3, | 4, and 5 | Unit |
|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------|---------------------------|----------|------|
| Symbol/Description                                                                                                                       | Condition                | Min      | Тур                       | Мах      | Onit |
| Absolute $V_{MAX}$ for a receiver pin $^{(37)}$                                                                                          | _                        | _        | _                         | 1.2      | V    |
| Absolute $V_{MIN}$ for a receiver pin                                                                                                    | _                        | -0.4     | _                         | _        | V    |
| Maximum peak-<br>to-peak differen-<br>tial input voltage<br>V <sub>ID</sub> (diff p-p)<br>before device<br>configuration <sup>(38)</sup> |                          | _        | _                         | 1.6      | V    |
| Maximum peak-                                                                                                                            | $V_{CCR_{GXB}} = 1.11 V$ |          |                           | 2.0      | V    |
| to-peak differen-<br>tial input voltage                                                                                                  | $V_{CCR\_GXB} = 1.03 V$  | _        | —                         | 2.0      | V    |
| V <sub>ID</sub> (diff p-p) after<br>device configura-<br>tion <sup>(38)</sup>                                                            | $V_{CCR_{GXB}} = 0.9 V$  | _        | _                         | 2.4      | V    |
| Minimum<br>differential eye<br>opening at<br>receiver serial<br>input pins <sup>(39)</sup>                                               | _                        | 50       | _                         | _        | mV   |
| Differential on-                                                                                                                         | 85-Ω setting             |          | 85 ± 30%                  | _        | Ω    |
| chip termination<br>resistors                                                                                                            | 100- $\Omega$ setting    | _        | $100 \pm 30\%$            | _        | Ω    |

<sup>&</sup>lt;sup>(37)</sup> The device cannot tolerate prolonged operation at this absolute maximum.



<sup>&</sup>lt;sup>(38)</sup> DC coupling specifications are pending silicon characterization.

<sup>&</sup>lt;sup>(39)</sup> The differential eye opening specification at the receiver input pins assumes that Receiver Equalization is disabled. If you enable Receiver Equalization, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.

#### 32 Transceiver Specifications for Arria 10 GX, SX, and GT Devices

| Symbol/Description                          | Symbol/Description Condition |       | ver Speed Grades 1, 2, 3, | Unit |      |
|---------------------------------------------|------------------------------|-------|---------------------------|------|------|
| Symbol/Description                          | Condition                    | Min   | Тур                       | Мах  | Onic |
| //                                          | $V_{CCR\_GXB} = 0.9 V$       | _     | 600                       | _    | mV   |
| V <sub>ICM</sub> (AC and DC coupled)        | $V_{CCR\_GXB} = 1.03 V$      | _     | 700                       | —    | mV   |
| I III                                       | $V_{CCR\_GXB} = 1.11 V$      | _     | 700                       |      | mV   |
| $t_{LTR}^{(40)}$                            | —                            | _     |                           | 10   | μs   |
| $t_{LTD}^{(41)}$                            | _                            | 4     |                           |      | μs   |
| $t_{LTD\_manual}^{(42)}$                    | _                            | 4     | _                         | _    | μs   |
| t <sub>LTR_LTD_manual</sub> <sup>(43)</sup> | _                            | 15    |                           |      | μs   |
| Run Length                                  | —                            |       |                           | 200  | UI   |
| CDR PPM                                     | PCIe-only                    | -300  |                           | 300  | РРМ  |
| tolerance                                   | All other protocols          | -1000 |                           | 1000 | РРМ  |
|                                             | DC Gain Setting = 0          | _     | -10                       | _    | dB   |
|                                             | DC Gain Setting = 1          |       | -6.5                      |      | dB   |
| Programmable DC<br>Gain                     | DC Gain Setting = 2          |       | -3                        |      | dB   |
|                                             | DC Gain Setting = 3          | _     | 0.5                       |      | dB   |
|                                             | DC Gain Setting = 4          |       | 4                         |      | dB   |



 $<sup>^{(40)}</sup>$  t<sub>LTR</sub> is the time required for the receive CDR to lock to the input reference clock frequency after coming out of reset.

 $<sup>^{(41)}</sup>$  t<sub>LTD</sub> is time required for the receiver CDR to start recovering valid data after the rx\_is\_lockedtodata signal goes high.

 $<sup>^{(42)}</sup>$  t<sub>LTD\_manual</sub> is the time required for the receiver CDR to start recovering valid data after the rx\_is\_lockedtodata signal goes high when the CDR is functioning in the manual mode.

<sup>&</sup>lt;sup>(43)</sup> t<sub>LTR\_LTD\_manual</sub> is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx\_is\_lockedtoref signal goes high when the CDR is functioning in the manual mode.

## Table 33: Transmitter Specifications—Preliminary

| Symbol/Description                   | Condition                                         | Transce | iver Speed Grades 1, 2, 3, | Unit   |      |
|--------------------------------------|---------------------------------------------------|---------|----------------------------|--------|------|
| Symbol/Description                   | Condition                                         | Min     | Тур                        | Max    | Onic |
| Supported I/O<br>Standards           | _                                                 | Hig     | gh Speed Differential I/C  | ) (44) | _    |
|                                      | 85- $\Omega$ setting                              |         | 85 ± 20%                   | _      | Ω    |
| Differential on-<br>chip termination | 100-Ω setting                                     |         | $100 \pm 20\%$             |        | Ω    |
| resistors                            | 120-Ω setting                                     | _       | $120 \pm 20\%$             |        | Ω    |
|                                      | 150-Ω setting                                     | _       | $150 \pm 20\%$             |        | Ω    |
|                                      | $V_{CCT} = 0.9 V$                                 | _       | 450                        |        | mV   |
| V <sub>OCM</sub> (AC<br>coupled)     | V <sub>CCT</sub> = 1.03 V                         | _       | 500                        |        | mV   |
| 1 /                                  | V <sub>CCT</sub> = 1.11 V                         | _       | 550                        |        | mV   |
|                                      | V <sub>CCT</sub> = 0.9 V                          | _       | 450                        |        | mV   |
| V <sub>OCM</sub> (DC<br>coupled)     | V <sub>CCT</sub> = 1.03 V                         | _       | 500                        |        | mV   |
|                                      | V <sub>CCT</sub> = 1.11 V                         | _       | 550                        |        | mV   |
| Rise time <sup>(45)</sup>            | 20% to 80%                                        | 20      | _                          | 130    | ps   |
| Fall time <sup>(45)</sup>            | 80% to 20%                                        | 20      |                            | 130    | ps   |
| Intra-differential<br>pair skew      | TX V <sub>CM</sub> = 0.5 V and slew rate of 15 ps | _       | _                          | 15     | ps   |

Arria 10 Device Datasheet

 <sup>&</sup>lt;sup>(44)</sup> High Speed Differential I/O is the dedicated I/O standard for the transmitter in Arria 10 transceivers.
 <sup>(45)</sup> The Quartus II software automatically selects the appropriate slew rate depending on the configured data rate or functional mode.

# Table 34: Typical Transmitter V<sub>OD</sub> Settings—Preliminary

| Symbol                                                 | V <sub>OD</sub> Setting | V <sub>OD</sub> /V <sub>CCT</sub> Ratio |
|--------------------------------------------------------|-------------------------|-----------------------------------------|
|                                                        | 31                      | 1.00                                    |
|                                                        | 30                      | 0.97                                    |
|                                                        | 29                      | 0.93                                    |
|                                                        | 28                      | 0.90                                    |
|                                                        | 27                      | 0.87                                    |
|                                                        | 26                      | 0.83                                    |
|                                                        | 25                      | 0.80                                    |
|                                                        | 24                      | 0.77                                    |
|                                                        | 23                      | 0.73                                    |
| $V_{OD}$ differential value = $V_{OD}/V_{CCT}$ ratio x | 22                      | 0.70                                    |
| V <sub>CCT</sub>                                       | 21                      | 0.67                                    |
|                                                        | 20                      | 0.63                                    |
|                                                        | 19                      | 0.60                                    |
|                                                        | 18                      | 0.57                                    |
|                                                        | 17                      | 0.53                                    |
|                                                        | 16                      | 0.50                                    |
|                                                        | 15                      | 0.47                                    |
|                                                        | 14                      | 0.43                                    |
|                                                        | 13                      | 0.40                                    |
|                                                        | 12                      | 0.37                                    |



# **Core Performance Specifications**

## **Clock Tree Specifications**

## Table 35: Clock Tree Performance for Arria 10 Devices—Preliminary

| Parameter                                               |                                                                        |                        |                                                             |      |
|---------------------------------------------------------|------------------------------------------------------------------------|------------------------|-------------------------------------------------------------|------|
|                                                         | –E1L,–E1M <sup>(46)</sup> , –E1S, –I1L,<br>–I1M <sup>(46)</sup> , –I1S | –E2L, –E2S, –I2L, –I2S | –E1M <sup>(47)</sup> , –I1M <sup>(47)</sup> , –E3S,<br>–I3S | Unit |
| Global clock, regional clock, and small periphery clock | 644                                                                    | 644                    | 644                                                         | MHz  |
| Large periphery clock                                   | 525                                                                    | 525                    | 525                                                         | MHz  |

## **PLL Specifications**

### **Fractional PLL Specifications**

## Table 36: Fractional PLL Specifications for Arria 10 Devices—Preliminary

| Symbol             | Parameter                                                   | Condition                 | Min   | Тур | Мах       | Unit |
|--------------------|-------------------------------------------------------------|---------------------------|-------|-----|-----------|------|
|                    | f <sub>IN</sub> Input clock frequency                       | -1 speed grade            | 50    | _   | 1000 (48) | MHz  |
| $f_{IN}$           |                                                             | -2 speed grade            | 50    | _   | TBD (48)  | MHz  |
|                    |                                                             | -3 speed grade            | 50    | _   | TBD (48)  | MHz  |
| f <sub>INPFD</sub> | Input clock frequency to the phase frequency detector (PFD) |                           | 50    |     | 325       | MHz  |
| f <sub>VCO</sub>   | PLL voltage-controlled oscillator<br>(VCO) operating range  | -1, -2, -3 speed<br>grade | 3.125 |     | 6.25      | GHz  |

 $<sup>^{(46)}</sup>$  When you power V<sub>CC</sub> and V<sub>CCP</sub> at nominal voltage of 0.90 V.



<sup>&</sup>lt;sup>(47)</sup> When you power  $V_{CC}$  and  $V_{CCP}$  at lower voltage of 0.83 V.

<sup>&</sup>lt;sup>(48)</sup> This specification is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.

| Symbol                              | Parameter                                                                                                      | Condition                     | Min | Тур | Max | Unit      |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------|-----|-----|-----|-----------|
| t <sub>EINDUTY</sub>                | Input clock duty cycle                                                                                         | —                             | 40  | _   | 60  | %         |
| f <sub>OUT</sub>                    | Output frequency for internal global or regional clock                                                         | -1, -2, -3 speed<br>grade     | —   |     | 644 | MHz       |
| f <sub>DYCONFIGCLK</sub>            | Dynamic configuration clock for mgmt_clk and scanclk                                                           |                               | —   |     | 100 | MHz       |
| t <sub>LOCK</sub>                   | Time required to lock from end-of-<br>device configuration or deassertion of<br>areset                         | _                             |     |     | 1   | ms        |
| t <sub>DLOCK</sub>                  | Time required to lock dynamically<br>(after switchover or reconfiguring any<br>non-post-scale counters/delays) | _                             | _   | _   | 1   | ms        |
|                                     | PLL closed-loop bandwidth                                                                                      | Low                           |     | TBD | _   | MHz       |
| $f_{\text{CLBW}}$                   |                                                                                                                | Medium                        |     | TBD | _   | MHz       |
|                                     |                                                                                                                | High                          |     | TBD |     | MHz       |
| t <sub>PLL_PSERR</sub>              | Accuracy of PLL phase shift                                                                                    | —                             |     | _   | ±50 | ps        |
| t <sub>ARESET</sub>                 | Minimum pulse width on the areset signal                                                                       |                               | 10  |     | _   | ns        |
| t <sub>INCCJ</sub> (49)(50)         | Input clock cycle-to-cycle jitter                                                                              | $F_{REF} \ge 100 \text{ MHz}$ |     | _   | TBD | UI (p-p)  |
|                                     |                                                                                                                | $F_{REF} < 100 \text{ MHz}$   |     | —   | TBD | ps (p-p)  |
| t <sub>foutpj</sub> <sup>(51)</sup> | Period jitter for clock output in fractional mode                                                              | $F_{OUT} \ge 100 \text{ MHz}$ |     | _   | TBD | ps (p-p)  |
|                                     |                                                                                                                | $F_{OUT} < 100 \text{ MHz}$   | _   | _   | TBD | mUI (p-p) |

<sup>(50)</sup>  $F_{\text{REF}}$  is  $f_{\text{IN}}/N$ , specification applies when N = 1.



<sup>&</sup>lt;sup>(49)</sup> A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source with jitter < 120 ps.</p>

<sup>(51)</sup> External memory interface clock output jitter specifications use a different measurement method, which are available in Memory Output Clock Jitter Specification for Arria 10 Devices table.

| Symbol                                                        | Parameter                                    | Condition                     | Min | Тур | Max | Unit      |
|---------------------------------------------------------------|----------------------------------------------|-------------------------------|-----|-----|-----|-----------|
| t(51)                                                         | Cycle-to-cycle jitter for clock output       | $F_{OUT} \ge 100 \text{ MHz}$ | _   | _   | TBD | ps (p-p)  |
| t <sub>FOUTCCJ</sub> <sup>(51)</sup>                          | in fractional mode                           | $F_{OUT} < 100 \text{ MHz}$   |     |     | TBD | mUI (p-p) |
| t <sub>OUTPI</sub> <sup>(51)</sup> Period jitter for clock ou | Period jitter for clock output in            | $F_{OUT} \ge 100 \text{ MHz}$ | _   |     | TBD | ps (p-p)  |
| COUTPJ                                                        | nteger mode                                  | $F_{OUT} < 100 \text{ MHz}$   | _   | _   | TBD | mUI (p-p) |
| t <sub>OUTCCI</sub> <sup>(51)</sup>                           | Cycle-to-cycle jitter for clock output       | $F_{OUT} \ge 100 \text{ MHz}$ | _   | _   | TBD | ps (p-p)  |
| OUTCCJ                                                        | in integer mode                              | $F_{OUT} < 100 \text{ MHz}$   | _   |     | TBD | mUI (p-p) |
| dK <sub>BIT</sub>                                             | Bit number of Delta Sigma Modulator<br>(DSM) |                               |     | 32  |     | bit       |

### Memory Output Clock Jitter Specifications on page 53

Provides more information about the external memory interface clock output jitter specifications.

### I/O PLL Specifications

### Table 37: I/O PLL Specifications for Arria 10 Devices—Preliminary

| Symbol             | Parameter                        | Condition      | Min | Тур | Мах      | Unit |
|--------------------|----------------------------------|----------------|-----|-----|----------|------|
|                    | Input clock frequency            | -1 speed grade | 10  | _   | 800 (52) | MHz  |
| $f_{IN}$           |                                  | -2 speed grade | 10  |     | 700 (52) | MHz  |
|                    |                                  | -3 speed grade | 10  |     | 650 (52) | MHz  |
| f <sub>INPFD</sub> | Input clock frequency to the PFD |                | 10  | _   | 325      | MHz  |
|                    | PLL VCO operating range          | -1 speed grade | 600 |     | 1600     | MHz  |
| $f_{VCO}$          |                                  | -2 speed grade | 600 |     | 1434     | MHz  |
|                    |                                  | -3 speed grade | 600 |     | 1250     | MHz  |

<sup>&</sup>lt;sup>(52)</sup> This specification is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.



#### 38 I/O PLL Specifications

| Symbol                   | Parameter                                                                                                      | Condition                 | Min | Тур | Мах | Unit |
|--------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------|-----|-----|-----|------|
| f <sub>CLBW</sub>        | PLL closed-loop bandwidth                                                                                      |                           | 0.1 | _   | 8   | MHz  |
| t <sub>EINDUTY</sub>     | Input clock or external feedback clock input duty cycle                                                        |                           | 40  |     | 60  | %    |
| f <sub>OUT</sub>         | Output frequency for internal global or regional clock (c counter)                                             | -1, -2, -3 speed<br>grade |     |     | 644 | MHz  |
|                          |                                                                                                                | -1 speed grade            | _   | _   | 800 | MHz  |
| $f_{OUT\_EXT}$           | Output frequency for external clock<br>output                                                                  | -2 speed grade            |     | _   | 720 | MHz  |
|                          |                                                                                                                | -3 speed grade            |     |     | 650 | MHz  |
| t <sub>OUTDUTY</sub>     | Duty cycle for dedicated external clock output (when set to 50%)                                               |                           | 45  | 50  | 55  | %    |
| t <sub>FCOMP</sub>       | External feedback clock compensation time                                                                      |                           |     |     | 10  | ns   |
| f <sub>DYCONFIGCLK</sub> | Dynamic configuration clock for mgmt_clk and scanclk                                                           | _                         | _   | _   | 100 | MHz  |
| t <sub>LOCK</sub>        | Time required to lock from end-of-<br>device configuration or deassertion of<br>areset                         | _                         |     | _   | 1   | ms   |
| t <sub>DLOCK</sub>       | Time required to lock dynamically<br>(after switchover or reconfiguring any<br>non-post-scale counters/delays) | _                         |     | _   | 1   | ms   |
| t <sub>PLL_PSERR</sub>   | Accuracy of PLL phase shift                                                                                    |                           | _   | —   | ±50 | ps   |
| t <sub>ARESET</sub>      | Minimum pulse width on the areset signal                                                                       | _                         | 10  | _   | —   | ns   |





| Symbol                                 | Parameter                                 | Condition                     | Min | Тур | Мах | Unit      |
|----------------------------------------|-------------------------------------------|-------------------------------|-----|-----|-----|-----------|
| t <sub>INCCJ</sub> <sup>(53)(54)</sup> | T 1                                       | $F_{REF} \ge 100 \text{ MHz}$ | _   | _   | TBD | UI (p-p)  |
| UNCCJ ( MAC)                           | Input clock cycle-to-cycle jitter         | $F_{REF} < 100 \text{ MHz}$   |     |     | TBD | ps (p-p)  |
| t                                      | Period jitter for dedicated clock output  | $F_{OUT} \ge 100 \text{ MHz}$ | _   | _   | TBD | ps (p-p)  |
| t <sub>outpj_dc</sub>                  | renou jitter for dedicated clock output   | F <sub>OUT</sub> < 100 MHz    |     |     | TBD | mUI (p-p) |
| t                                      | Cycle-to-cycle jitter for dedicated clock | $F_{OUT} \ge 100 \text{ MHz}$ |     |     | TBD | ps (p-p)  |
| t <sub>OUTCCJ_DC</sub>                 | output                                    | F <sub>OUT</sub> < 100 MHz    |     |     | TBD | mUI (p-p) |
| t (55)                                 | Period jitter for clock output on the     | $F_{OUT} \ge 100 \text{ MHz}$ |     |     | TBD | ps (p-p)  |
| t <sub>outpj_io</sub> <sup>(55)</sup>  | regular I/O                               | F <sub>OUT</sub> < 100 MHz    |     |     | TBD | mUI (p-p) |
| t <sub>OUTCCJ_IO</sub> <sup>(55)</sup> | Cycle-to-cycle jitter for clock output on | $F_{OUT} \ge 100 \text{ MHz}$ | _   | _   | TBD | ps (p-p)  |
| OUTCCJ_IO                              | the regular I/O                           | $F_{OUT} < 100 MHz$           |     |     | TBD | mUI (p-p) |
| ta. aa armr                            | Period jitter for dedicated clock output  | $F_{OUT} \ge 100 \text{ MHz}$ |     |     | TBD | ps (p-p)  |
| t <sub>CASC_OUTPJ_DC</sub>             | in cascaded PLLs                          | F <sub>OUT</sub> < 100 MHz    |     |     | TBD | mUI (p-p) |

Memory Output Clock Jitter Specifications on page 53

Provides more information about the external memory interface clock output jitter specifications.

<sup>(54)</sup>  $F_{\text{REF}}$  is  $f_{\text{IN}}/N$ , specification applies when N = 1.

#### Arria 10 Device Datasheet

**Altera Corporation** 



<sup>&</sup>lt;sup>(53)</sup> A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source with jitter < 120 ps.

<sup>&</sup>lt;sup>(55)</sup> External memory interface clock output jitter specifications use a different measurement method, which are available in Memory Output Clock Jitter Specification for Arria 10 Devices table.

### **DSP Block Specifications**

### Table 38: DSP Block Performance Specifications for Arria 10 Devices (V<sub>CC</sub> and V<sub>CCP</sub> at 0.9 V Typical Value)—Preliminary

|                                                                    |                                      |                                       | Perfor     | mance      |                                 |                             |      |
|--------------------------------------------------------------------|--------------------------------------|---------------------------------------|------------|------------|---------------------------------|-----------------------------|------|
| Mode                                                               | –E1L, –E1M<br><sup>(56)</sup> , –E1S | –I1L, –<br>I1M <sup>(56)</sup> , –I1S | –E2L, –E2S | –I2L, –I2S | –E1M <sup>(57)</sup> , –<br>E3S | –I1M <sup>(57)</sup> , –I3S | Unit |
| Fixed-point 18 × 19 multiplication mode                            | 548                                  | 528                                   | 456        | 438        | 364                             | 346                         | MHz  |
| Fixed-point $27 \times 27$ multiplication mode                     | 541                                  | 522                                   | 450        | 434        | 358                             | 344                         | MHz  |
| Fixed-point 18 × 18 multiplier adder mode                          | 548                                  | 529                                   | 459        | 440        | 370                             | 351                         | MHz  |
| Fixed-point 18 × 18 multiplier adder summed with 36-bit input mode | 539                                  | 517                                   | 444        | 422        | 349                             | 326                         | MHz  |
| Fixed-point 18 × 19 systolic mode                                  | 548                                  | 529                                   | 459        | 440        | 370                             | 351                         | MHz  |
| Complex 18 × 19 multiplication mode                                | 548                                  | 528                                   | 456        | 438        | 364                             | 346                         | MHz  |
| Floating point multiplication mode                                 | 548                                  | 527                                   | 447        | 427        | 347                             | 326                         | MHz  |
| Floating point adder or substract mode                             | 488                                  | 471                                   | 388        | 369        | 288                             | 266                         | MHz  |
| Floating point multiplier adder or substract mode                  | 483                                  | 465                                   | 386        | 368        | 290                             | 270                         | MHz  |
| Floating point multiplier accumulate mode                          | 510                                  | 490                                   | 418        | 393        | 326                             | 294                         | MHz  |
| Floating point vector one mode                                     | 502                                  | 482                                   | 404        | 382        | 306                             | 282                         | MHz  |
| Floating point vector two mode                                     | 474                                  | 455                                   | 383        | 367        | 293                             | 278                         | MHz  |



 $<sup>^{(56)}\,</sup>$  When you power  $V_{CC}$  and  $V_{CCP}$  at nominal voltage of 0.90 V.

<sup>&</sup>lt;sup>(57)</sup> When you power  $V_{CC}$  and  $V_{CCP}$  at lower voltage of 0.83 V.

### Table 39: DSP Block Performance Specifications for Arria 10 Devices (V<sub>CC</sub> and V<sub>CCP</sub> at 0.95 V Typical Value)—Preliminary

| Mode                                                                      | Perfor                            | mance      | Unit |  |
|---------------------------------------------------------------------------|-----------------------------------|------------|------|--|
| Mode                                                                      | –I1L, –I1M <sup>(56)</sup> , –I1S | –I2L, –I2S | Onit |  |
| Fixed-point 18 × 19 multiplication mode                                   | 635                               | 517        | MHz  |  |
| Fixed-point 27 × 27 multiplication mode                                   | 633                               | 517        | MHz  |  |
| Fixed-point 18 × 18 multiplier adder mode                                 | 635                               | 516        | MHz  |  |
| Fixed-point $18 \times 18$ multiplier adder summed with 36-bit input mode | 631                               | 509        | MHz  |  |
| Fixed-point 18 × 19 systolic mode                                         | 635                               | 516        | MHz  |  |
| Complex $18 \times 19$ multiplication mode                                | 635                               | 517        | MHz  |  |
| Floating point multiplication mode                                        | 635                               | 501        | MHz  |  |
| Floating point adder or substract mode                                    | 564                               | 468        | MHz  |  |
| Floating point multiplier adder or substract mode                         | 564                               | 475        | MHz  |  |
| Floating point multiplier accumulate mode                                 | 581                               | 482        | MHz  |  |
| Floating point vector one mode                                            | 574                               | 471        | MHz  |  |
| Floating point vector two mode                                            | 550                               | 450        | MHz  |  |

### **Memory Block Specifications**

To achieve the maximum memory block performance, use a memory block clock that comes through global clock routing from an on-chip PLL and set to **50%** output duty cycle. Use the Quartus II software to report timing for the memory block clocking schemes.

When you use the error detection cyclical redundancy check (CRC) feature, there is no degradation in  $f_{MAX}$ .



#### 42 Memory Block Specifications

### Table 40: Memory Block Performance Specifications for Arria 10 Devices—Preliminary

|        |                                                             | Resources Used |                 | Performance                             |                                          |                                                |                           |            |      |
|--------|-------------------------------------------------------------|----------------|-----------------|-----------------------------------------|------------------------------------------|------------------------------------------------|---------------------------|------------|------|
| Memory | Mode                                                        | ALUTs          | Memory<br>Block | –E1L,<br>–E1M <sup>(58)</sup> ,<br>–E1S | –I1L,<br>–I1M <sup>(58)</sup> , –<br>I1S | –E1M <sup>(59)</sup> ,<br>–I1M <sup>(59)</sup> | –E2L, –E2S,<br>–I2L, –I2S | –E3S, –I3S | Unit |
|        | Single port, all supported widths ( $\times 16/\times 32$ ) | 0              | 1               | 700                                     | 660                                      | 490                                            | 570                       | 490        | MHz  |
| MLAB   | Simple dual-port, all supported widths (×16/×32)            | 0              | 1               | 700                                     | 660                                      | 490                                            | 570                       | 490        | MHz  |
| WILAD  | Simple dual-port with read and write at the same address    | 0              | 1               | 460                                     | 450                                      | 330                                            | 400                       | 330        | MHz  |
|        | ROM, all supported width (×16/×32)                          | 0              | 1               | 700                                     | 660                                      | 490                                            | 570                       | 490        | MHz  |





 $<sup>^{(58)}\,</sup>$  When you power  $V_{CC}$  and  $V_{CCP}$  at nominal voltage of 0.90 V.

|               |                                                                                                                | Resourc | es Used         |                                         |                                          | Perfo                                          | ormance                   |            |      |
|---------------|----------------------------------------------------------------------------------------------------------------|---------|-----------------|-----------------------------------------|------------------------------------------|------------------------------------------------|---------------------------|------------|------|
| Memory        | Mode                                                                                                           | ALUTs   | Memory<br>Block | –E1L,<br>–E1M <sup>(58)</sup> ,<br>–E1S | –I1L,<br>–I1M <sup>(58)</sup> , –<br>I1S | –E1M <sup>(59)</sup> ,<br>–I1M <sup>(59)</sup> | –E2L, –E2S,<br>–I2L, –I2S | –E3S, –I3S | Unit |
|               | Single-port, all supported widths                                                                              | 0       | 1               | 730                                     | 690                                      | 510                                            | 625                       | 530        | MHz  |
|               | Simple dual-port, all supported widths                                                                         | 0       | 1               | 730                                     | 690                                      | 510                                            | 625                       | 530        | MHz  |
|               | Simple dual-port with the read-<br>during-write option set to <b>Old</b><br><b>Data</b> , all supported widths | 0       | 1               | 550                                     | 520                                      | 410                                            | 470                       | 410        | MHz  |
| M20K<br>Block | Simple dual-port with ECC enabled, 512 × 32                                                                    | 0       | 1               | 470                                     | 450                                      | 360                                            | 410                       | 360        | MHz  |
|               | Simple dual-port with ECC and optional pipeline registers enabled, $512 \times 32$                             | 0       | 1               | 620                                     | 590                                      | 470                                            | 520                       | 470        | MHz  |
|               | True dual port, all supported widths                                                                           | 0       | 1               | 730                                     | 690                                      | 510                                            | 625                       | 530        | MHz  |
|               | ROM, all supported widths                                                                                      | 0       | 1               | 730                                     | 690                                      | 510                                            | 680                       | 570        | MHz  |

- <sup>(59)</sup> When you power  $V_{CC}$  and  $V_{CCP}$  at lower voltage of 0.83 V. <sup>(59)</sup> When you power  $V_{CC}$  and  $V_{CCP}$  at lower voltage of 0.83 V.



 $<sup>^{(58)}\,</sup>$  When you power  $V_{CC}$  and  $V_{CCP}$  at nominal voltage of 0.90 V.

**Temperature Sensing Diode Specifications** 

Internal Temperature Sensing Diode Specifications

### Table 41: Internal Temperature Sensing Diode Specifications for Arria 10 Devices—Preliminary

| Temperature Range | Accuracy | Offset Calibrated<br>Option | Sampling Rate | Conversion<br>Time | Resolution | Minimum Resolution with no<br>Missing Codes |
|-------------------|----------|-----------------------------|---------------|--------------------|------------|---------------------------------------------|
| –40 to 125 °C     | ±5 °C    | No                          | 1 MHz         | < 5 ms             | 10 bits    | 10 bits                                     |

### **External Temperature Sensing Diode Specifications**

### Table 42: External Temperature Sensing Diode Specifications for Arria 10 Devices—Preliminary

| Description                              | Min | Тур  | Max | Unit |
|------------------------------------------|-----|------|-----|------|
| I <sub>bias</sub> , diode source current | 10  | _    | 100 | μΑ   |
| V <sub>bias</sub> , voltage across diode | 0.3 |      | 0.9 | V    |
| Series resistance                        |     |      | < 1 | Ω    |
| Diode ideality factor                    |     | 1.03 |     | —    |

### Internal Voltage Sensor Specifications

### Table 43: Internal Voltage Sensor Specifications for Arria 10 Devices—Preliminary

| Parameter                                  | Minimum | Typical | Maximum | Unit |
|--------------------------------------------|---------|---------|---------|------|
| Resolution                                 | 10      | —       | 12      | Bit  |
| Sampling rate                              | _       |         | 500     | Ksps |
| Differential non-linearity (DNL)           | _       |         | ±1      | LSB  |
| Integral non-linearity (INL)               | —       | —       | ±3      | LSB  |
| Input capacitance                          | _       | 20      |         | pF   |
| Signal to noise and distortion ratio (SNR) | 60      | —       |         | dB   |



|                        | Parameter                            | Minimum | Typical | Maximum | Unit |
|------------------------|--------------------------------------|---------|---------|---------|------|
| Clock frequency        | ,                                    |         | _       | 20      | MHz  |
|                        | Input signal range for Vsigp         | 0       |         | 1.5     | V    |
| Unipolar Input<br>Mode | Common mode voltage on Vsign         | 0       |         | 0.25    | V    |
|                        | Input signal range for Vsigp – Vsign | 0       | _       | 1.25    | V    |
| Bipolar Input          | Input signal range for Vsigp         | 0       |         | 1.25    | V    |
| Mode                   | Input signal range for Vsigp – Vsign | -0.625  |         | 0.625   | V    |

## **Periphery Performance Specifications**

This section describes the periphery performance, high-speed I/O, and external memory interface.

Actual achievable frequency depends on design and system specific factors. Ensure proper timing closure in your design and perform HSPICE/ IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.



### **High-Speed I/O Specifications**

### Table 44: High-Speed I/O Specifications for Arria 10 Devices—Preliminary

When serializer/deserializer (SERDES) factor J = 3 to 10, use the SERDES block.

For LVDS applications, you must use the PLLs in integer PLL mode.

You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and receiver sampling margin to determine the leftover timing margin.

| Symbol                                                                           | Condition                                              |     | –E1L, –E1M <sup>(60)</sup> , –E1S, –I1L,<br>–I1M <sup>(60)</sup> , –I1S |          | –E2L, –E2S, –I2L, –I2S |     |          | –E1M <sup>(61)</sup> , –I1M <sup>(61)</sup> , –E3S,<br>–I3S |     |                     | Unit |
|----------------------------------------------------------------------------------|--------------------------------------------------------|-----|-------------------------------------------------------------------------|----------|------------------------|-----|----------|-------------------------------------------------------------|-----|---------------------|------|
|                                                                                  |                                                        | Min | Тур                                                                     | Max      | Min                    | Тур | Max      | Min                                                         | Тур | Max                 |      |
| f <sub>HSCLK_in</sub> (input clock frequency)<br>True Differential I/O Standards | Clock boost<br>factor<br>W = 1 to 40 <sup>(62)</sup>   | 10  | _                                                                       | 800      | 10                     |     | 700      | 10                                                          | —   | 625                 | MHz  |
| f <sub>HSCLK_in</sub> (input clock frequency)<br>Single Ended I/O Standards      | Clock boost<br>factor<br>$W = 1 \text{ to } 40^{(62)}$ | 10  |                                                                         | 625      | 10                     |     | 625      | 10                                                          | _   | 525                 | MHz  |
| f <sub>HSCLK_OUT</sub> (output clock<br>frequency)                               | _                                                      | _   | _                                                                       | 800 (63) |                        |     | 700 (63) |                                                             |     | 625 <sup>(63)</sup> | MHz  |



 $<sup>^{(60)}</sup>$  When you power V<sub>CC</sub> and V<sub>CCP</sub> at nominal voltage of 0.90 V.

 $<sup>^{(61)}</sup>$  When you power V<sub>CC</sub> and V<sub>CCP</sub> at lower voltage of 0.83 V.

<sup>&</sup>lt;sup>(62)</sup> Clock Boost Factor (W) is the ratio between the input data rate and the input clock rate.

<sup>&</sup>lt;sup>(63)</sup> This is achieved by using the PHY clock network.

|                                                                  | Symbol                                                    | Condition                                                          | -E1L, - | E1M <sup>(60)</sup> ,<br>–I1M <sup>(60)</sup> , | –E1S, –I1L,<br>–I1S |      |           |      | -E1M | <sup>(61)</sup> , –I1N<br>–I3S | I <sup>(61)</sup> , –E3S, | Unit |
|------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------|---------|-------------------------------------------------|---------------------|------|-----------|------|------|--------------------------------|---------------------------|------|
|                                                                  |                                                           |                                                                    | Min     | Тур                                             | Max                 | Min  | Тур       | Max  | Min  | Тур                            | Max                       |      |
|                                                                  | SERDES factor<br>$J = 4 \text{ to } 10_{(66)}^{(65)(67)}$ | (67)                                                               | _       | 1600 (68)                                       | (67)                | _    | 1434 (68) | (67) |      | 1250 (68)                      | Mbps                      |      |
|                                                                  | True Differential I/O                                     | SERDES factor<br>$J = 3^{(65)(67)(66)}$                            | (67)    | _                                               | (68)                | (67) |           | (68) | (67) |                                | (68)                      | Mbps |
| Transmitter<br>$t_{x \text{ Jitter}}$ - True<br>Differential I/O | SERDES factor J<br>= 2, uses DDR<br>registers             | (67)                                                               | _       | 840 (68)(69)                                    | (67)                | _    | (68)(69)  | (67) |      | (68)(69)                       | Mbps                      |      |
|                                                                  | SERDES factor J<br>= 1, uses DDR<br>registers             | (67)                                                               |         | 420 (68)(69)                                    | (67)                | —    | (68)(69)  | (67) |      | (68)(69)                       | Mbps                      |      |
|                                                                  | Total jitter for<br>data rate,<br>600 Mbps –<br>1.6 Gbps  | _                                                                  | _       | 160                                             | _                   | _    | 200       | _    |      | 250                            | ps                        |      |
|                                                                  | Standards                                                 | Total jitter for<br>data rate,<br>< 600 Mbps                       |         | _                                               | 0.1                 | _    | —         | 0.12 | —    |                                | 0.15                      | UI   |
|                                                                  | t <sub>DUTY</sub> <sup>(70)</sup>                         | TX output clock<br>duty cycle for<br>Differential I/O<br>Standards | 45      | 50                                              | 55                  | 45   | 50        | 55   | 45   | 50                             | 55                        | %    |
|                                                                  | t <sub>RISE &amp;</sub> & t <sub>FALL</sub> (66)<br>(71)  | True Differential<br>I/O Standards                                 |         | _                                               | 160                 |      |           | 180  |      |                                | 200                       | ps   |
|                                                                  | TCCS <sup>(70)(64)</sup>                                  | True Differential<br>I/O Standards                                 |         | _                                               | 150                 |      | _         | 150  |      |                                | 150                       | ps   |

<sup>(60)</sup> When you power  $V_{CC}$  and  $V_{CCP}$  at nominal voltage of 0.90 V. <sup>(61)</sup> When you power  $V_{CC}$  and  $V_{CCP}$  at lower voltage of 0.83 V.



| Symbol             |                                                                | Condition                                      | –E1L, –E1M <sup>(60)</sup> , –E1S, –I1L,<br>–I1M <sup>(60)</sup> , –I1S |     | –E2L, –E2S, –I2L, –I2S |      |     | –E1M <sup>(61)</sup> , –I1M <sup>(61)</sup> , –E3S,<br>–I3S |      |     | Unit  |      |
|--------------------|----------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------|-----|------------------------|------|-----|-------------------------------------------------------------|------|-----|-------|------|
|                    |                                                                |                                                | Min                                                                     | Тур | Max                    | Min  | Тур | Max                                                         | Min  | Тур | Max   |      |
|                    | True Differential I/O<br>Standards - f <sub>HSDRDPA</sub>      | SERDES factor<br>J = 4 to 10 $^{(65)(67)(66)}$ | —                                                                       | -   | 1600                   | —    | _   | 1434                                                        | _    | _   | 1250  | Mbps |
|                    | (data rate)                                                    | SERDES factor<br>$J = 3^{(65)(67)(66)}$        | —                                                                       | _   | (68)                   | —    | —   | (68)                                                        | —    | —   | (68)  | Mbps |
| Receiver           |                                                                | SERDES factor $J = 3 \text{ to } 10$           | (67)                                                                    |     | (72)                   | (67) |     | (72)                                                        | (67) |     | (72)  | Mbps |
|                    | f <sub>HSDR</sub> (data rate)<br>(without DPA) <sup>(64)</sup> | SERDES factor J<br>= 2, uses DDR<br>registers  | (67)                                                                    |     | (69)                   | (67) | _   | (69)                                                        | (67) | _   | (69)  | Mbps |
|                    |                                                                | SERDES factor J<br>= 1, uses DDR<br>registers  | (67)                                                                    |     | (69)                   | (67) |     | (69)                                                        | (67) | _   | (69)  | Mbps |
| DPA (FIFO<br>mode) | DPA run length                                                 |                                                | —                                                                       | _   | 10000                  |      |     | 10000                                                       | —    |     | 10000 | UI   |

<sup>(68)</sup> Pending silicon characterization.

<sup>(69)</sup> The maximum ideal data rate is the SERDES factor (J) x the PLL maximum output frequency (f<sub>OUT</sub>) provided you can close the design timing and the signal integrity meets the interface requirements.

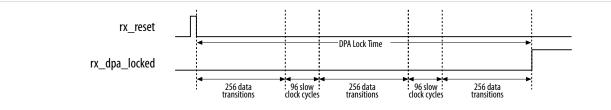
<sup>(70)</sup> Not applicable for DIVCLK = 1.

 $^{(71)}$  This applies to default pre-emphasis and V<sub>OD</sub> settings only.



<sup>&</sup>lt;sup>(64)</sup> Requires package skew compensation with PCB trace length.

 $<sup>^{(65)}</sup>$  The  $F_{max}$  specification is based on the fast clock used for serial data. The interface  $F_{max}$  is also dependent on the parallel clock domain which is design dependent and requires timing analysis.


 $<sup>^{(66)}</sup>$  The V<sub>CC</sub> and V<sub>CCP</sub> must be on a combined power layer and a maximum load of 5 pF for chip-to-chip interface.

<sup>&</sup>lt;sup>(67)</sup> The minimum specification depends on the clock source (for example, the PLL and clock pin) and the clock routing resource (global, regional, or local) that you use. The I/O differential buffer and serializer do not have a minimum toggle rate.

| Symbol                 |                           | Condition              | –E1L, –E1M <sup>(60)</sup> , –E1S, –I1L,<br>–I1M <sup>(60)</sup> , –I1S |     | –E2L, –E2S, –I2L, –I2S                 |     |     | –E1M <sup>(61)</sup> , –I1M <sup>(61)</sup> , –E3S,<br>–I3S |     |     | Unit                                   |       |
|------------------------|---------------------------|------------------------|-------------------------------------------------------------------------|-----|----------------------------------------|-----|-----|-------------------------------------------------------------|-----|-----|----------------------------------------|-------|
|                        |                           |                        | Min                                                                     | Тур | Max                                    | Min | Тур | Max                                                         | Min | Тур | Max                                    |       |
|                        |                           | SGMII/GbE<br>protocol  | _                                                                       | _   | 5                                      | _   | _   | 5                                                           | _   | -   | 5                                      | UI    |
| DPA (soft<br>CDR mode) | DPA run length            | All other<br>protocols |                                                                         |     | 50 data<br>transition<br>per 208<br>UI |     |     | 50 data<br>transition<br>per 208<br>UI                      |     | _   | 50 data<br>transition<br>per 208<br>UI | _     |
| Soft CDR<br>mode       | Soft-CDR ppm<br>tolerance |                        | _                                                                       | _   | 300                                    | _   |     | 300                                                         | _   | _   | 300                                    | ± ppm |
| Non DPA<br>mode        | Sampling Window           | _                      | _                                                                       | _   | 300                                    | —   | —   | 300                                                         | —   | —   | 300                                    | ps    |

### **DPA Lock Time Specifications**

Figure 2: DPA Lock Time Specifications with DPA PLL Calibration Enabled





 $<sup>^{(60)}\,</sup>$  When you power  $V_{CC}$  and  $V_{CCP}$  at nominal voltage of 0.90 V.

<sup>&</sup>lt;sup>(61)</sup> When you power  $V_{CC}$  and  $V_{CCP}$  at lower voltage of 0.83 V.

<sup>&</sup>lt;sup>(72)</sup> You can estimate the achievable maximum data rate for non-DPA mode by performing link timing closure analysis. You must consider the board skew margin, transmitter delay margin, and receiver sampling margin to determine the maximum data rate supported.

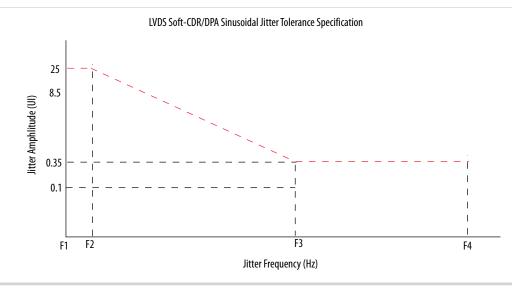
<sup>&</sup>lt;sup>(60)</sup> When you power  $V_{CC}$  and  $V_{CCP}$  at nominal voltage of 0.90 V.

<sup>&</sup>lt;sup>(61)</sup> When you power  $V_{CC}$  and  $V_{CCP}$  at lower voltage of 0.83 V.

#### 50 DPA Lock Time Specifications

### Table 45: DPA Lock Time Specifications for Arria 10 Devices—Preliminary

The specifications are applicable to both commercial and industrial grades. The DPA lock time is for one channel. One data transition is defined as a 0-to-1 or 1-to-0 transition.

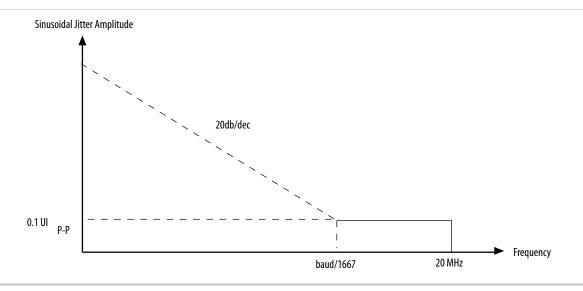

| Standard            | Training Pattern     | Number of Data Transitions in<br>One Repetition of the<br>Training Pattern | Number of Repetitions per 256 Data Transitions <sup>(73)</sup> | Maximum Data Transition |
|---------------------|----------------------|----------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------|
| SPI-4               | 00000000001111111111 | 2                                                                          | 128                                                            | 640                     |
| Parallel Rapid I/O  | 00001111             | 2                                                                          | 128                                                            | 640                     |
| r araller Rapid 1/0 | 10010000             | 4                                                                          | 64                                                             | 640                     |
| Miscellaneous       | 10101010             | 8                                                                          | 32                                                             | 640                     |
|                     | 01010101             | 8                                                                          | 32                                                             | 640                     |



<sup>&</sup>lt;sup>(73)</sup> This is the number of repetitions for the stated training pattern to achieve the 256 data transitions.

### LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specifications






### Table 46: LVDS Soft-CDR/DPA Sinusoidal Jitter Mask Values for a Data Rate Equal to 1.6 Gbps—Preliminary

| Jitter Freq | uency (Hz) | Sinusoidal Jitter (UI) |  |  |
|-------------|------------|------------------------|--|--|
| F1          | 10,000     | 25.00                  |  |  |
| F2          | 17,565     | 25.00                  |  |  |
| F3          | 1,493,000  | 0.35                   |  |  |
| F4          | 50,000,000 | 0.35                   |  |  |



### Figure 4: LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specifications for a Data Rate Less than 1.6 Gbps



### **DLL Range Specifications**

### Table 47: DLL Frequency Range Specifications for Arria 10 Devices—Preliminary

Arria 10 devices support memory interface frequencies lower than 667 MHz, although the reference clock that feeds the DLL must be at least 667 MHz. To support interfaces below 667 MHz, multiply the reference clock feeding the DLL to ensure the frequency is within the supported range.

| Parameter                     | Parameter Performance (for All Speed Grades) |     |  |
|-------------------------------|----------------------------------------------|-----|--|
| DLL operating frequency range | 667 - 1333                                   | MHz |  |

### **DQS Logic Block Specifications**

### Table 48: DQS Phase Shift Error Specifications for DLL-Delayed Clock (t<sub>DQS\_PSERR</sub>) for Arria 10 Devices—Preliminary

This error specification is the absolute maximum and minimum error.

| Symbol                 | Symbol Performance (for All Speed Grades) |    |
|------------------------|-------------------------------------------|----|
| t <sub>DQS_PSERR</sub> | 5                                         | ps |



### **Memory Output Clock Jitter Specifications**

#### Table 49: Memory Output Clock Jitter Specifications for Arria 10 Devices—Preliminary

The clock jitter specification applies to the memory output clock pins clocked by an integer PLL, or generated using differential signal-splitter and double data I/O circuits clocked by a PLL output routed on a PHY clock network as specified. Altera recommends using PHY clock networks for better jitter performance.

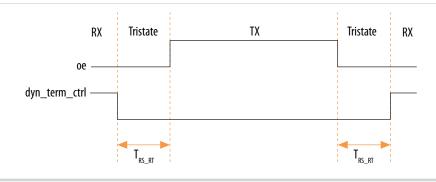
The memory output clock jitter is applicable when an input jitter of 10 ps peak-to-peak is applied with bit error rate (BER)  $10^{-12}$ , equivalent to 14 sigma.

| Parameter Clock Network |                              | Symbol                 | –E1L, –E1M <sup>(74)</sup> , –E1S,<br>–I1L, –I1M <sup>(74)</sup> , –I1S |     | –E2L, –E2S | , –I2L, –I2S |     | I M <sup>(75)</sup> , –E3S,<br>3S | Unit |  |
|-------------------------|------------------------------|------------------------|-------------------------------------------------------------------------|-----|------------|--------------|-----|-----------------------------------|------|--|
|                         |                              |                        | Min                                                                     | Max | Min        | Max          | Min | Max                               |      |  |
|                         | Clock period jitter          | t <sub>JIT(per)</sub>  | 58                                                                      | 58  | 58         | 58           | 58  | 58                                | ps   |  |
| PHY<br>clock            | Cycle-to-cycle period jitter | t <sub>JIT(cc)</sub>   | 58                                                                      | 58  | 58         | 58           | 58  | 58                                | ps   |  |
|                         | Duty cycle jitter            | t <sub>JIT(duty)</sub> | 58                                                                      | 58  | 58         | 58           | 58  | 58                                | ps   |  |

### **OCT Calibration Block Specifications**

### Table 50: OCT Calibration Block Specifications for Arria 10 Devices—Preliminary

| Symbol                | Description                                                                                                                                           | Min    | Тур | Max | Unit   |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|-----|--------|
| OCTUSRCLK             | Clock required by OCT calibration blocks                                                                                                              | _      | _   | 20  | MHz    |
| T <sub>OCTCAL</sub>   | Number of OCTUSRCLK clock cycles required for $R_S OCT / R_T OCT$ calibration                                                                         | > 1000 | _   | —   | Cycles |
| T <sub>OCTSHIFT</sub> | Number of OCTUSRCLK clock cycles required for OCT code to shift out                                                                                   | _      | 32  | _   | Cycles |
| T <sub>RS_RT</sub>    | Time required between the dyn_term_ctrl and oe signal transitions in a bidirectional I/O buffer to dynamically switch between $R_S$ OCT and $R_T$ OCT | _      | 2.5 | _   | ns     |


 $<sup>^{(74)}</sup>$  When you power V<sub>CC</sub> and V<sub>CCP</sub> at nominal voltage of 0.90 V.



<sup>&</sup>lt;sup>(75)</sup> When you power  $V_{CC}$  and  $V_{CCP}$  at lower voltage of 0.83 V.

#### 54 Configuration Specifications

### Figure 5: Timing Diagram for on oe and dyn\_term\_ctrl Signals



## **Configuration Specifications**

This section provides configuration specifications and timing for Arria 10 devices.

## **POR Specifications**

Power-on reset (POR) delay is defined as the delay between the time when all the power supplies monitored by the POR circuitry reach the minimum recommended operating voltage to the time when the nSTATUS is released high and your device is ready to begin configuration.

### Table 51: Fast and Standard POR Delay Specification for Arria 10 Devices—Preliminary

| POR Delay | Minimum | Maximum | Unit |
|-----------|---------|---------|------|
| Fast      | 4       | 12 (76) | ms   |
| Standard  | 100     | 300     | ms   |

### **Related Information**

### **MSEL Pin Settings**

Provides more information about POR delay based on MSEL pin settings for each configuration scheme.



<sup>&</sup>lt;sup>(76)</sup> The maximum pulse width of the fast POR delay is 12 ms, providing enough time for the PCIe hard IP to initialize after the POR trip.

## JTAG Configuration Timing

| Symbol                  | Description                              | Min                            | Мах | Unit |
|-------------------------|------------------------------------------|--------------------------------|-----|------|
| t <sub>JCP</sub>        | TCK clock period                         | <b>30,</b> 167 <sup>(77)</sup> | _   | ns   |
| t <sub>JCH</sub>        | TCK clock high time                      | 14                             |     | ns   |
| t <sub>JCL</sub>        | TCK clock low time                       | 14                             |     | ns   |
| t <sub>JPSU (TDI)</sub> | TDI JTAG port setup time                 | 2                              |     | ns   |
| t <sub>JPSU (TMS)</sub> | TMS JTAG port setup time                 | 3                              |     | ns   |
| t <sub>JPH</sub>        | JTAG port hold time                      | 5                              |     | ns   |
| t <sub>JPCO</sub>       | JTAG port clock to output                | —                              | 11  | ns   |
| t <sub>JPZX</sub>       | JTAG port high impedance to valid output |                                | 14  | ns   |
| t <sub>JPXZ</sub>       | JTAG port valid output to high impedance |                                | 14  | ns   |

### Table 52: JTAG Timing Parameters and Values for Arria 10 Devices—Preliminary

## **FPP Configuration Timing**

### DCLK-to-DATA[] Ratio (r) for FPP Configuration

Fast passive parallel (FPP) configuration requires a different DCLK-to-DATA[] ratio when you turn on encryption or the compression feature.

Depending on the DCLK-to-DATA[] ratio, the host must send a DCLK frequency that is *r* times the DATA[] rate in byte per second (Bps) or word per second (Wps). For example, in FPP ×16 where the *r* is 2, the DCLK frequency must be 2 times the DATA[] rate in Wps.

Arria 10 Device Datasheet



<sup>(77)</sup> The minimum TCK clock period is 167 ns if  $V_{CCBAT}$  is within the range 1.2 V – 1.5 V when you perform the volatile key programming.

#### Table 53: DCLK-to-DATA[] Ratio for Arria 10 Devices—Preliminary

| <b>V</b> (1)                      | • • • • • • •           | ·· · · · · · · · · · ·    |
|-----------------------------------|-------------------------|---------------------------|
| You cannot turn on encryption and | compression at the same | time for Arria 10 devices |
| rou cumot cum on eneryption una   | compression at the same |                           |

| Configuration Scheme | Encryption | Compression | DCLK-to-DATA[] Ratio (r) |
|----------------------|------------|-------------|--------------------------|
|                      | Off        | Off         | 1                        |
| FPP (8-bit wide)     | On         | Off         | 1                        |
|                      | Off        | On          | 2                        |
|                      | Off        | Off         | 1                        |
| FPP (16-bit wide)    | On         | Off         | 2                        |
|                      | Off        | On          | 4                        |
|                      | Off        | Off         | 1                        |
| FPP (32-bit wide)    | On         | Off         | 4                        |
|                      | Off        | On          | 8                        |

### FPP Configuration Timing when DCLK-to-DATA[] = 1

Note: When you enable decompression or the design security feature, the DCLK-to-DATA[] ratio varies for FPP ×8, FPP ×16, and FPP ×32. For the respective DCLK-to-DATA[] ratio, refer to the DCLK-to-DATA[] Ratio for Arria 10 Devices table.

### Table 54: FPP Timing Parameters When the DCLK-to-DATA[] Ratio is 1 for Arria 10 Devices—Preliminary

| TT (1 (* *                  | 1 .1 1            |                     |                    | 1. 1.1 1      |
|-----------------------------|-------------------|---------------------|--------------------|---------------|
| Use these timing parameter  | s when the decomi | pression and design | security features  | are disabled  |
| e se these thinks parameter |                   | action and action   | locourity reacting | are arouorea. |

| Symbol              | Parameter                    | Minimum | Maximum    | Unit |
|---------------------|------------------------------|---------|------------|------|
| t <sub>CF2CD</sub>  | nconfig low to conf_done low | _       | 600        | ns   |
| t <sub>CF2ST0</sub> | nconfig low to nstatus low   |         | 600        | ns   |
| t <sub>CFG</sub>    | nCONFIG low pulse width      | 2       |            | μs   |
| t <sub>STATUS</sub> | nSTATUS low pulse width      | 268     | 1,506 (78) | μs   |
| t <sub>CF2ST1</sub> | nCONFIG high to nSTATUS high | _       | 1,506 (79) | μs   |

<sup>&</sup>lt;sup>(78)</sup> This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.



| Symbol                             | Parameter                                         | Minimum                                          | Maximum | Unit |
|------------------------------------|---------------------------------------------------|--------------------------------------------------|---------|------|
| t <sub>CF2CK</sub> <sup>(80)</sup> | nCONFIG high to first rising edge on DCLK         | 1,506                                            | —       | μs   |
| t <sub>ST2CK</sub> <sup>(80)</sup> | nSTATUS high to first rising edge of DCLK         | 2                                                | _       | μs   |
| t <sub>DSU</sub>                   | DATA[] setup time before rising edge on DCLK      | 5.5                                              |         | ns   |
| t <sub>DH</sub>                    | DATA[] hold time after rising edge on DCLK        | 0                                                |         | ns   |
| t <sub>CH</sub>                    | DCLK high time                                    | $0.45 \times 1/f_{MAX}$                          | _       | S    |
| t <sub>CL</sub>                    | DCLK low time                                     | $0.45 \times 1/f_{MAX}$                          |         | S    |
| t <sub>CLK</sub>                   | DCLK period                                       | 1/f <sub>MAX</sub>                               | _       | S    |
| f <sub>MAX</sub>                   | DCLK frequency (FPP ×8/×16)                       | —                                                | 125     | MHz  |
| IMAX                               | DCLK frequency (FPP ×32)                          | —                                                | 100     | MHz  |
| t <sub>CD2UM</sub>                 | CONF_DONE high to user mode <sup>(81)</sup>       | 175                                              | 437     | μs   |
| t <sub>CD2CU</sub>                 | CONF_DONE high to CLKUSR enabled                  | 4 × maximum DCLK<br>period                       | _       | _    |
| t <sub>CD2UMC</sub>                | CONF_DONE high to user mode with CLKUSR option on | t <sub>CD2CU</sub> +<br>(600 × clkusr<br>period) |         |      |

**FPP Configuration Timing** 

Provides the FPP configuration timing waveforms.

Arria 10 Device Datasheet

**Altera Corporation** 

57



<sup>&</sup>lt;sup>(79)</sup> This value is applicable if you do not delay configuration by externally holding the nSTATUS low.

<sup>&</sup>lt;sup>(80)</sup> If nSTATUS is monitored, follow the  $t_{ST2CK}$  specification. If nSTATUS is not monitored, follow the  $t_{CF2CK}$  specification.

<sup>&</sup>lt;sup>(81)</sup> The minimum and maximum numbers apply only if you chose the internal oscillator as the clock source for initializing the device.

### FPP Configuration Timing when DCLK-to-DATA[] >1

### Table 55: FPP Timing Parameters When the DCLK-to-DATA[] Ratio is >1 for Arria 10 Devices—Preliminary

Use these timing parameters when you use the decompression and design security features.

| Symbol                             | Parameter                                    | Minimum                               | Maximum    | Unit |
|------------------------------------|----------------------------------------------|---------------------------------------|------------|------|
| t <sub>CF2CD</sub>                 | nCONFIG low to CONF_DONE low                 | —                                     | 600        | ns   |
| t <sub>CF2ST0</sub>                | nconfig low to nstatus low                   |                                       | 600        | ns   |
| t <sub>CFG</sub>                   | nCONFIG low pulse width                      | 2                                     |            | μs   |
| t <sub>STATUS</sub>                | nSTATUS low pulse width                      | 268                                   | 1,506 (82) | μs   |
| t <sub>CF2ST1</sub>                | nCONFIG high to nSTATUS high                 | _                                     | 1,506 (82) | μs   |
| t <sub>CF2CK</sub> <sup>(83)</sup> | nCONFIG high to first rising edge on DCLK    | 1,506                                 |            | μs   |
| t <sub>ST2CK</sub> <sup>(83)</sup> | nSTATUS high to first rising edge of DCLK    | 2                                     |            | μs   |
| t <sub>DSU</sub>                   | DATA[] setup time before rising edge on DCLK | 5.5                                   |            | ns   |
| t <sub>DH</sub>                    | DATA[] hold time after rising edge on DCLK   | N-1/f <sub>DCLK</sub> <sup>(84)</sup> |            | S    |
| t <sub>CH</sub>                    | DCLK high time                               | $0.45 	imes 1/f_{MAX}$                |            | S    |
| t <sub>CL</sub>                    | DCLK low time                                | $0.45 	imes 1/f_{MAX}$                |            | S    |
| t <sub>CLK</sub>                   | DCLK period                                  | 1/f <sub>MAX</sub>                    | _          | S    |
| £                                  | DCLK frequency (FPP ×8/×16)                  | _                                     | 125        | MHz  |
| $f_{MAX}$                          | DCLK frequency (FPP ×32)                     | _                                     | 100        | MHz  |
| t <sub>R</sub>                     | Input rise time                              | _                                     | 40         | ns   |
| t <sub>F</sub>                     | Input fall time                              | —                                     | 40         | ns   |
| t <sub>CD2UM</sub>                 | CONF_DONE high to user mode <sup>(85)</sup>  | 175                                   | 437        | μs   |

<sup>&</sup>lt;sup>(82)</sup> You can obtain this value if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.





 $<sup>^{(83)}</sup>$  If nSTATUS is monitored, follow the t<sub>ST2CK</sub> specification. If nSTATUS is not monitored, follow the t<sub>CF2CK</sub> specification.

<sup>&</sup>lt;sup>(84)</sup> N is the DCLK-to-DATA ratio and  $f_{DCLK}$  is the DCLK frequency the system is operating.

<sup>&</sup>lt;sup>(85)</sup> The minimum and maximum numbers apply only if you use the internal oscillator as the clock source for initializing the device.

| Symbol              | Parameter                                         | Minimum                                          | Maximum | Unit |
|---------------------|---------------------------------------------------|--------------------------------------------------|---------|------|
| t <sub>CD2CU</sub>  | CONF_DONE high to CLKUSR enabled                  | $4 \times \text{maximum DCLK}$ period            | _       | -    |
| t <sub>CD2UMC</sub> | CONF_DONE high to user mode with CLKUSR option on | t <sub>CD2CU</sub> +<br>(600 × CLKUSR<br>period) | _       | _    |

**FPP Configuration Timing** 

Provides the FPP configuration timing waveforms.

## **AS Configuration Timing**

### Table 56: AS Timing Parameters for AS ×1 and AS ×4 Configurations in Arria 10 Devices—Preliminary

The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device.

The t<sub>CF2CD</sub>, t<sub>CF2ST0</sub>, t<sub>CFG</sub>, t<sub>STATUS</sub>, and t<sub>CF2ST1</sub> timing parameters are identical to the timing parameters for passive serial (PS) mode listed in PS Timing Parameters for Arria 10 Devices table.

| Symbol              | Parameter                                         | Minimum                                       | Maximum | Unit |
|---------------------|---------------------------------------------------|-----------------------------------------------|---------|------|
| t <sub>CO</sub>     | DCLK falling edge to AS_DATA0/ASDO output         | _                                             | 4       | ns   |
| t <sub>SU</sub>     | Data setup time before falling edge on DCLK       | 1                                             |         | ns   |
| t <sub>DH</sub>     | Data hold time after falling edge on DCLK         | 1.5                                           |         | ns   |
| t <sub>CD2UM</sub>  | CONF_DONE high to user mode                       | 175                                           | 437     | μs   |
| t <sub>CD2CU</sub>  | CONF_DONE high to CLKUSR enabled                  | $4 \times \text{maximum DCLK}$ period         | _       | _    |
| t <sub>CD2UMC</sub> | CONF_DONE high to user mode with CLKUSR option on | t <sub>CD2CU</sub> + (600 ×<br>CLKUSR period) | _       | -    |

#### **Related Information**

• PS Configuration Timing on page 60



• AS Configuration Timing Provides the AS configuration timing waveform.

### DCLK Frequency Specification in the AS Configuration Scheme

### Table 57: DCLK Frequency Specification in the AS Configuration Scheme—Preliminary

This table lists the internal clock frequency specification for the AS configuration scheme.

The DCLK frequency specification applies when you use the internal oscillator as the configuration clock source.

The AS multi-device configuration scheme does not support DCLK frequency of 100 MHz.

You can only set 12.5, 25, 50, and 100 MHz in the Quartus II software.

| Parameter                          | Minimum | Typical | Maximum | Unit |
|------------------------------------|---------|---------|---------|------|
|                                    | 5.3     | 7.9     | 12.5    | MHz  |
| DCLK frequency in AS configuration | 10.6    | 15.7    | 25.0    | MHz  |
| scheme                             | 21.3    | 31.4    | 50.0    | MHz  |
|                                    | 42.6    | 62.9    | 100.0   | MHz  |

## PS Configuration Timing

### Table 58: PS Timing Parameters for Arria 10 Devices—Preliminary

| Symbol              | Parameter                    | Minimum | Maximum    | Unit |
|---------------------|------------------------------|---------|------------|------|
| t <sub>CF2CD</sub>  | nCONFIG low to CONF_DONE low | _       | 600        | ns   |
| t <sub>CF2ST0</sub> | nconfig low to nstatus low   | _       | 600        | ns   |
| t <sub>CFG</sub>    | nCONFIG low pulse width      | 2       |            | μs   |
| t <sub>STATUS</sub> | nSTATUS low pulse width      | 268     | 1,506 (86) | μs   |
| t <sub>CF2ST1</sub> | nCONFIG high to nSTATUS high |         | 1,506 (87) | μs   |

<sup>(86)</sup> This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.

<sup>(87)</sup> This value is applicable if you do not delay configuration by externally holding the nSTATUS low.

60

Send Feedback



2015.05.08

| Symbol                             | Parameter                                         | Minimum                                       | Maximum | Unit |
|------------------------------------|---------------------------------------------------|-----------------------------------------------|---------|------|
| t <sub>CF2CK</sub> <sup>(88)</sup> | nCONFIG high to first rising edge on DCLK         | 1,506                                         | —       | μs   |
| t <sub>ST2CK</sub> <sup>(88)</sup> | nSTATUS high to first rising edge of DCLK         | 2                                             | _       | μs   |
| t <sub>DSU</sub>                   | DATA[] setup time before rising edge on DCLK      | 5.5                                           | —       | ns   |
| t <sub>DH</sub>                    | DATA[] hold time after rising edge on DCLK        | 0                                             | —       | ns   |
| t <sub>CH</sub>                    | DCLK high time                                    | $0.45 \times 1/f_{MAX}$                       |         | S    |
| t <sub>CL</sub>                    | DCLK low time                                     | $0.45 \times 1/f_{MAX}$                       | _       | S    |
| t <sub>CLK</sub>                   | DCLK period                                       | $1/f_{MAX}$                                   | _       | S    |
| $f_{MAX}$                          | DCLK frequency                                    | _                                             | 125     | MHz  |
| t <sub>CD2UM</sub>                 | CONF_DONE high to user mode <sup>(89)</sup>       | 175                                           | 437     | μs   |
| t <sub>CD2CU</sub>                 | CONF_DONE high to CLKUSR enabled                  | $4 \times \text{maximum DCLK}$ period         | _       | _    |
| t <sub>CD2UMC</sub>                | CONF_DONE high to user mode with CLKUSR option on | t <sub>CD2CU</sub> + (600 ×<br>CLKUSR period) | _       | _    |

#### **PS Configuration Timing**

Provides the PS configuration timing waveform.

### Initialization

### Table 59: Initialization Clock Source Option and the Maximum Frequency for Arria 10 Devices—Preliminary

| Initialization Clock Source | Configuration Scheme | Maximum Frequency (MHz) | Minimum Number of Clock Cycles |
|-----------------------------|----------------------|-------------------------|--------------------------------|
| Internal Oscillator         | AS, PS, and FPP      | 12.5                    | 600                            |
| CLKUSR <sup>(90)(91)</sup>  | AS, PS, and FPP      | 100                     | 000                            |

<sup>&</sup>lt;sup>(88)</sup> If nSTATUS is monitored, follow the t<sub>ST2CK</sub> specification. If nSTATUS is not monitored, follow the t<sub>CF2CK</sub> specification.



<sup>&</sup>lt;sup>(89)</sup> The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device.

## **Configuration Files**

#### Table 60: Uncompressed .rbf Sizes for Arria 10 Devices—Preliminary

Use this table to estimate the file size before design compilation. Different configuration file formats, such as a hexadecimal file (.hex) or tabular text file (.ttf) format, have different file sizes.

For the different types of configuration file and file sizes, refer to the Quartus II software. However, for a specific version of the Quartus II software, any design targeted for the same device has the same uncompressed configuration file size.

| Variant     | Product Line | Configuration .rbf Size<br>(bits) | IOCSR .rbf Size (bits) | Recommended EPCQ-L Serial Configuration Device |
|-------------|--------------|-----------------------------------|------------------------|------------------------------------------------|
|             | GX 016       | 81,923,582                        | 1,356,716              | EPCQ-L1024                                     |
|             | GX 022       | 81,923,582                        | 1,356,716              | EPCQ-L1024                                     |
|             | GX 027       | 122,591,622                       | 1,360,284              | EPCQ-L1024                                     |
|             | GX 032       | 122,591,622                       | 1,360,284              | EPCQ-L1024                                     |
| Arria 10 GX | GX 048       | 177,341,246                       | 1,454,656              | EPCQ-L1024                                     |
|             | GX 057       | 252,831,072                       | 1,549,028              | EPCQ-L1024                                     |
|             | GX 066       | 252,831,072                       | 1,549,028              | EPCQ-L1024                                     |
|             | GX 900       | 351,292,512                       | 1,885,396              | EPCQ-L1024                                     |
|             | GX 1150      | 351,292,512                       | 1,885,396              | EPCQ-L1024                                     |
| Arria 10 GT | GT 900       | 351,292,512                       | 1,885,396              | EPCQ-L1024                                     |
|             | GT 1150      | 351,292,512                       | 1,885,396              | EPCQ-L1024                                     |



2015.05.08



<sup>&</sup>lt;sup>(90)</sup> To enable CLKUSR as the initialization clock source, turn on the **Enable user-supplied start-up clock (CLKUSR)** option in the Quartus II software from the **General** panel of the **Device and Pin Options** dialog box.

<sup>&</sup>lt;sup>(91)</sup> If you use the CLKUSR pin for AS and transceiver calibration simultaneously, the only allowed frequency is 100 MHz.

A10-DATASHEET 2015.05.08

| Variant     | Product Line | Configuration .rbf Size<br>(bits) | IOCSR .rbf Size (bits) | Recommended EPCQ-L Serial Configuration Device |
|-------------|--------------|-----------------------------------|------------------------|------------------------------------------------|
|             | SX 016       | 81,923,582                        | 1,356,716              | EPCQ-L1024                                     |
|             | SX 022       | 81,923,582                        | 1,356,716              | EPCQ-L1024                                     |
|             | SX 027       | 122,591,622                       | 1,360,284              | EPCQ-L1024                                     |
| Arria 10 SX | SX 032       | 122,591,622                       | 1,360,284              | EPCQ-L1024                                     |
|             | SX 048       | 177,341,246                       | 1,454,656              | EPCQ-L1024                                     |
|             | SX 057       | 252,831,072                       | 1,549,028              | EPCQ-L1024                                     |
|             | SX 066       | 252,831,072                       | 1,549,028              | EPCQ-L1024                                     |

Arria 10 Device Datasheet

Altera Corporation



## Minimum Configuration Time Estimation

### Table 61: Minimum Configuration Time Estimation for Arria 10 Devices—Preliminary

| The estimated values are based on the config | uration uncompressed raw binar | v file ( <b>.rbf</b> ) sizes in Uncom | pressed .rbf Sizes for Arria 10 Devices table. |
|----------------------------------------------|--------------------------------|---------------------------------------|------------------------------------------------|
|                                              | ,                              |                                       | 1                                              |

|                  |              | Active Serial <sup>(92)</sup> |            |                                    | Fast Passive Parallel <sup>(93)</sup> |            |                                    |  |
|------------------|--------------|-------------------------------|------------|------------------------------------|---------------------------------------|------------|------------------------------------|--|
| Variant          | Product Line | Width                         | DCLK (MHz) | Minimum Configuration<br>Time (ms) | Width                                 | DCLK (MHz) | Minimum Configuration Time<br>(ms) |  |
|                  | GX 016       | 4                             | 100        | 204.81                             | 32                                    | 100        | 25.60                              |  |
|                  | GX 022       | 4                             | 100        | 204.81                             | 32                                    | 100        | 25.60                              |  |
|                  | GX 027       | 4                             | 100        | 306.48                             | 32                                    | 100        | 38.31                              |  |
|                  | GX 032       | 4                             | 100        | 306.48                             | 32                                    | 100        | 38.31                              |  |
| Arria 10 GX GX ( | GX 048       | 4                             | 100        | 443.35                             | 32                                    | 100        | 55.42                              |  |
|                  | GX 057       | 4                             | 100        | 632.08                             | 32                                    | 100        | 79.01                              |  |
|                  | GX 066       | 4                             | 100        | 632.08                             | 32                                    | 100        | 79.01                              |  |
|                  | GX 900       | 4                             | 100        | 883.20                             | 32                                    | 100        | 110.40                             |  |
|                  | GX 1150      | 4                             | 100        | 883.20                             | 32                                    | 100        | 110.40                             |  |
| Arria 10 GT      | GT 900       | 4                             | 100        | 883.20                             | 32                                    | 100        | 110.40                             |  |
|                  | GT 1150      | 4                             | 100        | 883.20                             | 32                                    | 100        | 110.40                             |  |

<sup>(92)</sup> DCLK frequency of 100 MHz using external CLKUSR.



|                      |        | Active Serial <sup>(92)</sup> |                                    |        | Fast Passive Parallel <sup>(93)</sup> |                                    |       |  |
|----------------------|--------|-------------------------------|------------------------------------|--------|---------------------------------------|------------------------------------|-------|--|
| Variant Product Line | Width  | DCLK (MHz)                    | Minimum Configuration<br>Time (ms) | Width  | DCLK (MHz)                            | Minimum Configuration Time<br>(ms) |       |  |
|                      | SX 016 | 4                             | 100                                | 204.81 | 32                                    | 100                                | 25.60 |  |
|                      | SX 022 | 4                             | 100                                | 204.81 | 32                                    | 100                                | 25.60 |  |
| Arria 10 SX          | SX 027 | 4                             | 100                                | 306.48 | 32                                    | 100                                | 38.31 |  |
|                      | SX 032 | 4                             | 100                                | 306.48 | 32                                    | 100                                | 38.31 |  |
|                      | SX 048 | 4                             | 100                                | 443.35 | 32                                    | 100                                | 55.42 |  |
|                      | SX 057 | 4                             | 100                                | 632.08 | 32                                    | 100                                | 79.01 |  |
|                      | SX 066 | 4                             | 100                                | 632.08 | 32                                    | 100                                | 79.01 |  |

Configuration Files on page 62

### **Remote System Upgrades**

### Table 62: Remote System Upgrade Circuitry Timing Specifications for Arria 10 Devices—Preliminary

| Parameter                                | Minimum | Maximum | Unit |
|------------------------------------------|---------|---------|------|
| f <sub>MAX_RU_CLK</sub> <sup>(94)</sup>  | —       | 40      | MHz  |
| t <sub>RU_nCONFIG</sub> <sup>(95)</sup>  | 250     | _       | ns   |
| t <sub>RU_nRSTIMER</sub> <sup>(96)</sup> | 250     | _       | ns   |

<sup>&</sup>lt;sup>(92)</sup> DCLK frequency of 100 MHz using external CLKUSR.



<sup>&</sup>lt;sup>(93)</sup> Maximum FPGA FPP bandwidth may exceed bandwidth available from some external storage or control logic.

<sup>&</sup>lt;sup>(93)</sup> Maximum FPGA FPP bandwidth may exceed bandwidth available from some external storage or control logic.

<sup>&</sup>lt;sup>(94)</sup> This clock is user-supplied to the remote system upgrade circuitry. If you are using the ALTREMOTE\_UPDATE megafunction IP core, the clock user-supplied to the ALTREMOTE\_UPDATE IP core must meet this specification.

<sup>&</sup>lt;sup>(95)</sup> This is equivalent to strobing the reconfiguration input of the ALTREMOTE\_UPDATE IP core high for the minimum timing specification.

<sup>&</sup>lt;sup>(96)</sup> This is equivalent to strobing the reset\_timer input of the ALTREMOTE\_UPDATE IP core high for the minimum timing specification.

- **Remote System Upgrade State Machine** Provides more information about configuration reset (RU\_CONFIG) signal.
- User Watchdog Timer Provides more information about reset\_timer (RU\_nRSTIMER) signal.

### User Watchdog Internal Circuitry Timing Specifications

### Table 63: User Watchdog Internal Oscillator Frequency Specifications for Arria 10 Devices—Preliminary

| Parameter                                   | Minimum | Typical | Maximum | Unit |
|---------------------------------------------|---------|---------|---------|------|
| User watchdog internal oscillator frequency | 5.3     | 7.9     | 12.5    | MHz  |

## I/O Timing

66

Altera offers two ways to determine I/O timing—the Excel-based I/O Timing and the Quartus II Timing Analyzer.

Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis.

The Quartus II Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after you complete place-and-route.

#### **Related Information**

### Arria 10 I/O Timing Spreadsheet

Provides the Arria 10 Excel-based I/O timing spreadsheet.



## Programmable IOE Delay

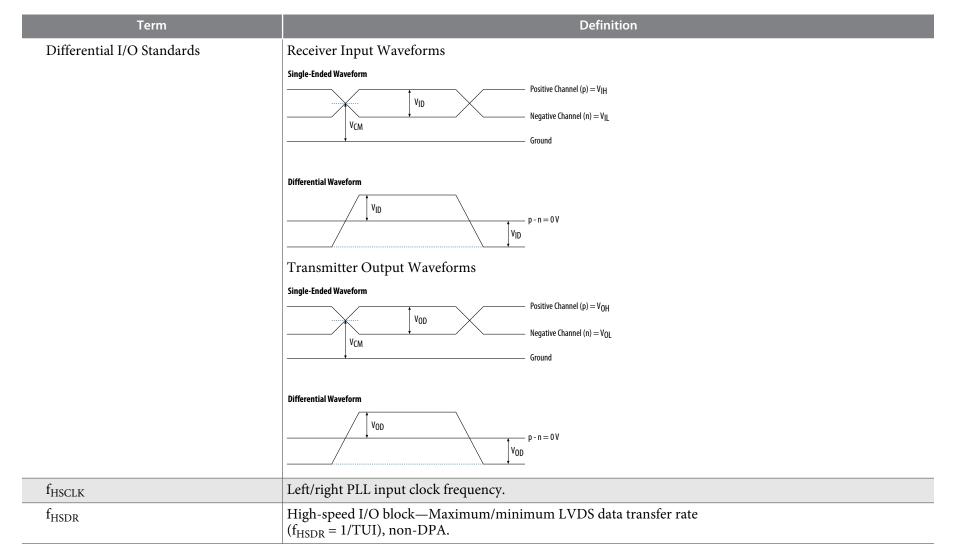
### Table 64: IOE Programmable Delay for Arria 10 Devices—Preliminary

For the exact values for each setting, use the latest version of the Quartus II software.

| Parameter <sup>(97)</sup>                             | Available | Available Minimum      | Fast Model |            | Slow Model |       |       |       | Unit  |      |
|-------------------------------------------------------|-----------|------------------------|------------|------------|------------|-------|-------|-------|-------|------|
| Falameter                                             | Settings  | Offset <sup>(98)</sup> | Extended   | Industrial | -I1L       | -I2S  | –I3S  | –E2S  | –E3S  | Onic |
| Input Delay<br>Chain Setting<br>(IO_IN_DLY_<br>CHN)   | 64        | 0                      | 1.829      | 1.820      | 4.128      | 4.764 | 5.485 | 4.764 | 5.485 | ns   |
| Output Delay<br>Chain Setting<br>(IO_OUT_<br>DLY_CHN) | 16        | 0                      | 0.433      | 0.430      | 0.990      | 1.145 | 1.326 | 1.145 | 1.326 | ns   |

Arria 10 Device Datasheet




<sup>&</sup>lt;sup>(97)</sup> You can set this value in the Quartus II software by selecting **Input Delay Chain Setting** or **Output Delay Chain Setting** in the **Assignment Name** column.

<sup>&</sup>lt;sup>(98)</sup> Minimum offset does not include the intrinsic delay.

#### Glossary

## Glossary

### Table 65: Glossary





| Term                       | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| f <sub>hsdrdpa</sub>       | High-speed I/O block—Maximum/minimum LVDS data transfer rate (f <sub>HSDRDPA</sub> = 1/TUI), DPA.                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| J                          | High-speed I/O block—Deserialization factor (width of parallel data bus).                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| JTAG Timing Specifications | JTAG Timing Specifications:<br>TMS<br>TDI<br>$t_{JCP}$<br>$t_{JCP}$<br>$t_{JPSU}$<br>$t_{JPSU}$<br>$t_{JPSU}$<br>$t_{JPXZ}$<br>TDO<br>$t_{JPZX}$<br>$t_{JPCO}$<br>$t_{JPXZ}$                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| Preliminary                | <ul> <li>Some tables show the designation as "Preliminary". Preliminary characteristics are created using simulation results, process data, and other known parameters.</li> <li>Final numbers are based on actual silicon characterization and testing. The numbers reflect the actual performance of the device under worst-case silicon process, voltage, and junction temperature conditions. There are no preliminary designations on finalized tables.</li> </ul> |  |  |  |  |  |
| R <sub>L</sub>             | Receiver differential input discrete resistor (external to the Arria 10 device).                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Sampling window (SW)       | Timing Diagram—the period of time during which the data must be valid in order to capture it correctly.<br>The setup and hold times determine the ideal strobe position in the sampling window, as shown:                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                            | 0.5 x TCCS RSKM Sampling Window RSKM 0.5 x TCCS (SW)                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |

| Term                                            | Definition                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Single-ended voltage referenced I/O<br>standard | The JEDEC standard for the SSTL and HSTL I/O defines both the AC and DC input signal values. The AC values indicate the voltage levels at which the receiver must meet its timing specifications. The DC values indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. After the receiver input has crossed the AC value, the receiver changes to the new logic state. |  |  |  |
|                                                 | The new logic state is then maintained as long as the input stays beyond the DC threshold. This approach is intended to provide predictable receiver timing in the presence of input waveform ringing.                                                                                                                                                                                                               |  |  |  |
|                                                 | Single-Ended Voltage Referenced I/O Standard                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|                                                 | V CCIO           V0H         V H(AC)           V REF         V IL(DC)           V IL(AC)         V IL(AC)           Voit         V IL(AC)                                                                                                                                                                                                                                                                            |  |  |  |
| t <sub>C</sub>                                  | High-speed receiver/transmitter input and output clock period.                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| TCCS (channel-to-channel-skew)                  | The timing difference between the fastest and slowest output edges, including the $t_{CO}$ variation and clock skew, across channels driven by the same PLL. The clock is included in the TCCS measurement (refer to the Timing Diagram figure under SW in this table).                                                                                                                                              |  |  |  |
| t <sub>DUTY</sub>                               | High-speed I/O block—Duty cycle on high-speed transmitter output clock.                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| t <sub>FALL</sub>                               | Signal high-to-low transition time (80–20%)                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| t <sub>INCCJ</sub>                              | Cycle-to-cycle jitter tolerance on the PLL clock input                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| t <sub>outpj_io</sub>                           | Period jitter on the GPIO driven by a PLL                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| t <sub>outpj_dc</sub>                           | Period jitter on the dedicated clock output driven by a PLL                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| t <sub>RISE</sub>                               | Signal low-to-high transition time (20–80%)                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| Timing Unit Interval (TUI)                      | The timing budget allowed for skew, propagation delays, and the data sampling window.<br>(TUI = $1/(\text{Receiver Input Clock Frequency Multiplication Factor}) = t_C/w)$ .                                                                                                                                                                                                                                         |  |  |  |



| Term                 | Definition                                                                                                                                                       |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V <sub>CM(DC)</sub>  | DC Common mode input voltage.                                                                                                                                    |
| V <sub>ICM</sub>     | Input Common mode voltage—The common mode of the differential signal at the receiver.                                                                            |
| V <sub>ID</sub>      | Input differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.     |
| V <sub>DIF(AC)</sub> | AC differential input voltage—Minimum AC input differential voltage required for switching.                                                                      |
| V <sub>DIF(DC)</sub> | DC differential input voltage— Minimum DC input differential voltage required for switching.                                                                     |
| V <sub>IH</sub>      | Voltage input high—The minimum positive voltage applied to the input which is accepted by the device as a logic high.                                            |
| V <sub>IH(AC)</sub>  | High-level AC input voltage                                                                                                                                      |
| V <sub>IH(DC)</sub>  | High-level DC input voltage                                                                                                                                      |
| V <sub>IL</sub>      | Voltage input low—The maximum positive voltage applied to the input which is accepted by the device as a logic low.                                              |
| V <sub>IL(AC)</sub>  | Low-level AC input voltage                                                                                                                                       |
| V <sub>IL(DC)</sub>  | Low-level DC input voltage                                                                                                                                       |
| V <sub>OCM</sub>     | Output Common mode voltage—The common mode of the differential signal at the transmitter.                                                                        |
| V <sub>OD</sub>      | Output differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the transmitter. |
| V <sub>SWING</sub>   | Differential input voltage                                                                                                                                       |
| V <sub>IX</sub>      | Input differential cross point voltage                                                                                                                           |
| V <sub>OX</sub>      | Output differential cross point voltage                                                                                                                          |
| W                    | High-speed I/O block—Clock Boost Factor                                                                                                                          |



# **Document Revision History**

| Date     | Version    | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| May 2015 | 2015.05.08 | <ul> <li>Made the following changes:</li> <li>Changed the specifications for the V<sub>ICM</sub> (AC coupled) parameter in the "Reference Clock Specifications" table.</li> <li>Changed the maximum frequency in the "CMU PLL Performance" table in the <i>Transceiver Performance for GT Devices</i> section.</li> <li>Added a footnote to the transceiver speed grade 5 column in the "Transmitter and Receiver Data Rate Performance" table.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| May 2015 | 2015.05.04 | <ul> <li>Updated the Maximum Allowed Overshoot During Transitions for Arria 10 Devices table.</li> <li>Added a note to t<sub>ramp</sub> in the Recommended Operating Conditions for Arria 10 Devices table. Note: t<sub>ramp</sub> is the ramp time of each individual power supply, not the ramp time of all combined power supplies.</li> <li>Changed the minimum, typical, and maximum values for the transmitter and receiver power supply in the "Transceiver Power Supply Operating Conditions for Arria 10 GT Devices" table.</li> <li>Added –1 speed grade in the condition column for V<sub>CCL_HPS</sub> at 0.95 V in HPS Power Supply Operating Conditions for Arria 10 SX Devices table.</li> <li>Added –11S, –12S, and –E2S speed grades to the following tables: <ul> <li>Clock Tree Performance for Arria 10 Devices</li> <li>DSP Block Performance Specifications for Arria 10 Devices</li> <li>Memory Block Performance Specifications for Arria 10 Devices</li> <li>High-Speed I/O Specifications for Arria 10 Devices</li> <li>Updated f<sub>IN</sub> minimum value from 27 MHz to 50 MHz for all speed grades in the Fractional PLL Specifications for Arria 10 Devices table.</li> </ul> </li> <li>Changed the description for f<sub>INPFD</sub> to "Input clock frequency to the PFD" in the I/O PLL Specifications for Arria 10 Devices table.</li> <li>Updated DSP Block Performance Specifications for Arria 10 Devices table devices table.</li> </ul> |





| Data | Vorsion | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date | Version | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      |         | <ul> <li>Updated I<sub>bias</sub> minimum value from 8 µA to 10 µA and maximum value from 200 µA to 100 µA in the External Temperature Sensing Diode Specifications for Arria 10 Devices table.</li> <li>Added DPA (soft CDR mode) specifications in High-Speed I/O Specifications for Arria 10 Devices table.</li> <li>Added desription in POR Specifications section: Power-on reset (POR) delay is defined as the delay between the time when all the power supplies monitored by the POR circuitry reach the minimum recommended operating voltage to the time when the nSTATUS is released high and your device is ready to begin configuration.</li> <li>Moved the following timing diagrams to the Configuration, Design Security, and Remote System Upgrades in Arria 10 Devices chapter.</li> </ul>                                                                               |
|      |         | <ul> <li>FPP Configuration Timing Waveform When the DCLK-to-DATA[] Ratio is 1</li> <li>FPP Configuration Timing Waveform When the DCLK-to-DATA[] Ratio is &gt;1</li> <li>AS Configuration Timing Waveform</li> <li>PS Configuration Timing Waveform</li> <li>Removed the DCLK-to-DATA[] ratio when both encryption and compression are turned on. Added description to the table: You cannot turn on encryption and compression at the same time for Arria 10 devices.</li> <li>Updated the AS Timing Parameters for AS ×1 and AS ×4 Configurations in Arria 10 Devices table as follows:</li> </ul>                                                                                                                                                                                                                                                                                       |
|      |         | <ul> <li>Changed the symbol for data hold time from t<sub>H</sub> to t<sub>DH</sub>.</li> <li>Updated the minimum value for t<sub>SU</sub> from 0 ns to 1 ns.</li> <li>Updated the minimum value for t<sub>DH</sub> from 2.5 ns to 1.5 ns.</li> <li>Added a note to the DCLK Frequency Specification in the AS Configuration Scheme table. Note: You can only set 12.5, 25, 50, and 100 MHz in the Quartus II software.</li> <li>Added a note to the Initialization Clock Source Option and the Maximum Frequency for Arria 10 Devices. Note: If you use the CLKUSR pin for AS and transceiver calibration simultaneously, the only allowed frequency is 100 MHz.</li> <li>Changed Arria 10 GS to Arria 10 SX in Uncompressed .rbf Sizes and Minimum Configuration Time Estimation tables.</li> <li>Added IO_IN_DLY_CHN and IO_OUT_DLY_CHN in the IOE Programmable Delay table.</li> </ul> |



| Date | Version | Changes                                                                                                                                                                                                                                                      |
|------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |         | <ul> <li>Changed the Min/Typ/Max description for the V<sub>ICM</sub> (AC coupled) parameter in the "Reference Clock<br/>Specifications" table.</li> </ul>                                                                                                    |
|      |         | <ul> <li>Changed the Min/Typ/Max values in the "Transceiver Power Supply Operating Conditions for Arria 10 GX/<br/>SX Devices" table.</li> </ul>                                                                                                             |
|      |         | <ul> <li>Changed the Min/Typ/Max values in the "Transceiver Power Supply Operating Conditions for Arria 10 GT<br/>Devices" table.</li> </ul>                                                                                                                 |
|      |         | • Added a footnote to the maximum data rate for GT channels in the "Transceiver Performance for GT Devices" section.                                                                                                                                         |
|      |         | • Made the following changes to the "Transceiver Performance for Arria 10 GX/SX Devices" section.                                                                                                                                                            |
|      |         | • Changed the maximum data rate condition for chip-to-chip and backplane in the "Transmitter and Receiver Data Rate Performance" table.                                                                                                                      |
|      |         | • Added TX minimum data rate to the "Transmitter and Receiver Data Rate Performance" table.                                                                                                                                                                  |
|      |         | Changed the minimum frequency in the "ATX PLL Performance" table.                                                                                                                                                                                            |
|      |         | Changed the minimum frequency in the "Fractional PLL Performance" table.                                                                                                                                                                                     |
|      |         | Changed the minimum and maximum frequency in the "CMU PLL Performance" table.                                                                                                                                                                                |
|      |         | • Made the following changes to the "Transceiver Performance for Arria 10 GT Devices" section.                                                                                                                                                               |
|      |         | <ul> <li>Added TX minimum data rate to the "Transmitter and Receiver Data Rate Performance" table.</li> <li>Changed the maximum data rate condition for chip-to-chip and backplane in the "Transmitter and Receiver Data Rate Performance" table.</li> </ul> |
|      |         | Changed the minimum frequency in the "ATX PLL Performance" table.                                                                                                                                                                                            |
|      |         | Changed the minimum frequency in the "Fractional PLL Performance" table.                                                                                                                                                                                     |
|      |         | Changed the minimum frequency in the "CMU PLL Performance" table.                                                                                                                                                                                            |
|      |         | • Added voltage condition to the maximum peak-to-peak diff p-p after configuration and to the V <sub>ICM</sub> specifications in the "Receiver Specifications" table.                                                                                        |
|      |         | • Changed the voltage conditions for V <sub>OCM</sub> in the "Transmitter Specifications" table.                                                                                                                                                             |
|      |         | • Changed the $V_{OD}/V_{CCT}$ Ratios in the "Typical Transmitter $V_{OD}$ Settings" table.                                                                                                                                                                  |
|      |         | Added the "Transceiver Clock Network Maximum Data Rate Specifications" table.                                                                                                                                                                                |





| Date         | Version    | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| January 2015 | 2015.01.23 | <ul> <li>Added a note in the "Transceiver Power Supply Operating Conditions" section.</li> <li>Made the following changes to the "Reference Clock Specifications" table:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              |            | <ul> <li>Added the input reference clock frequency parameters for the CMU PLL, ATX PLL, and fPLL PLL.</li> <li>Changed the maximum specification for rise time and fall time.</li> <li>Added the V<sub>ICM</sub> (AC and DC coupled) parameters.</li> <li>Changed the maximum value for Transmitter REFCLK Phase Noise (622 MHz) when ≥ 1 MHz.</li> <li>Changed the Min, Typ, and Max values for the reconfig_clk signal in the "Transceiver Clocks Specifications" table.</li> </ul>                                                                                                                                                                                                                                                                                                        |
|              |            | Made the following changes to the "Receiver Specifications" table:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              |            | <ul> <li>Added the maximum peak-to-peak differential input voltage after device configuration specifications.</li> <li>Changed the minimum specification for the minimum differential eye opening at receiver serial input pins parameter.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              |            | <ul> <li>Removed the 120-ohm and 150-ohm conditions for the differential on-chip termination resistors parameter.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              |            | <ul> <li>Added the V<sub>ICM</sub> (AC and DC coupled) parameter.</li> <li>Added the Programmable DC Gain parameter.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |            | <ul> <li>Made the following changes to the "Transmitter Specifications" table:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              |            | • Added the V <sub>OCM</sub> (AC coupled) parameter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              |            | Added the V <sub>OCM</sub> (DC coupled) parameter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              |            | <ul> <li>Changed the rise and fall time mimimum and maximum specifications.</li> <li>Added the "Typical Transmitter V<sub>OD</sub> Settings" table.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              |            | <ul> <li>Added a note to V<sub>CC</sub>, V<sub>CCP</sub>, and V<sub>CCERAM</sub> typical values in Recommended Operating Conditions table.<br/>Note: You can operate -1 and -2 speed grade devices at 0.9 V or 0.95 V typical value. You can operate -3 speed grade device at only 0.9 V typical value. Core performance shown in this datasheet is applicable for the operation at 0.9 V. Operating at 0.95 V results in higher core performance and higher power consumption.<br/>For more information about the performance and power consumption of 0.95 V operation, refer to the Quartus II software timing reports and Early Power Estimator (EPE).</li> <li>Removed military grade operating junction temperature specifications (T<sub>I</sub>) in Recommended Operating</li> </ul> |
|              |            | Conditions table.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



| Date | Version | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |         | <ul> <li>Updated the V<sub>CCIO</sub> range for HSTL-18 I/O standard in Differential HSTL and HSUL I/O Standards for<br/>Arria 10 Devices table as follows:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                          |
|      |         | <ul> <li>Min: Updated from 1.425 V to 1.71 V</li> <li>Typ: Updated from 1.5 V to 1.8 V</li> <li>Max: Updated from 1.575 V to 1.89 V</li> <li>Added a statement to Differential I/O Standards Specifications for Arria 10 Devices table: Differential inputs are powered by V<sub>CCPT</sub> which requires 1.8 V.</li> <li>Added statement in I/O Standard Specifications: You must perform timing closure analysis to determine the maximum achievable frequency for general purpose I/O standards.</li> <li>Updated fractional PLL specifications.</li> </ul> |
|      |         | <ul> <li>Updated f<sub>OUT_C</sub> to f<sub>OUT</sub> and updated the maximum value to 644 MHz for all speed grades.</li> <li>Updated f<sub>VCO</sub> minimum value from 2.4 GHz to 3.125 GHz.</li> <li>Removed f<sub>OUT_L</sub>, k<sub>VALUE</sub>, and f<sub>RES</sub> parameters.</li> <li>Updated I/O PLL specifications.</li> </ul>                                                                                                                                                                                                                       |
|      |         | <ul> <li>Updated f<sub>OUT_C</sub> to f<sub>OUT</sub> and updated the maximum value to 644 MHz for all speed grades.</li> <li>Updated f<sub>OUT_EXT</sub> maximum value to 800 MHz (-1 speed grade), 720 MHz (-2 speed grade), and 650 MHz (-3 speed grade).</li> <li>Removed f<sub>RES</sub> parameter.</li> </ul>                                                                                                                                                                                                                                             |
|      |         | Updated the description in Periphery Performance Specifications to mention that proper timing closure is required in design.                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      |         | <ul> <li>Updated AS Timing Parameters for AS x1 and AS x4 Configurations in Arria 10 Devices.</li> <li>Updated t<sub>SU</sub> minimum value from 1.5 ns to 0 ns.</li> <li>Updated t<sub>H</sub> minimum value from 0 ns to 2.5 ns.</li> <li>Updated CLKUSR initialization clock source maximum frequency from 125 MHz to 100 MHz for passive configuration schemes (PS and FPP).</li> </ul>                                                                                                                                                                     |



| Date        | Version    | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |            | <ul> <li>Added uncompressed .rbf sizes and minimum configuration time estimation for Arria 10 GX and GS devices.</li> <li>Updated uncompressed .rbf sizes for Arria 10 GX 900 and 1150 devices, and Arria 10 GT 900 and 1150 devices.</li> <li>Updated configuration .rbf size from 335,106,890 bits to 351,292,512 bits.</li> <li>Updated IOCSR .rbf size from 6,702,138 bits to 1,885,396 bits.</li> <li>Updated minimum configuration time estimation for Arria 10 GX 900 and 1150 devices, and Arria 10 GT 900 and 1150 devices for the following configuration modes:</li> <li>Active serial: Updated from 837.77 ms to 883.20 ms.</li> <li>Fast Passive Parallel: Updated from 104.72 ms to 110.40 ms.</li> </ul>                                                                                                                                                                                                                |
| August 2014 | 2014.08.18 | <ul> <li>Changed the 3 V I/O conditions in Table 2.</li> <li>Table 3: <ul> <li>Added a note to the Minimum and Maximum operating conditions.</li> <li>Changed V<sub>CCERAM</sub> values.</li> <li>Changed the Maximum recommended operating conditions for 3 V I/O V<sub>I</sub>.</li> </ul> </li> <li>Added a note to the I/O pin pull-up tolerance in Table 12.</li> <li>Changed the V<sub>IH</sub> values for LVTTL, LVCMOS and 2.5 I/O standards in Table 13.</li> <li>Table 14, Table 15, and Table 16: <ul> <li>Added SSTL-12 I/O standard.</li> <li>Removed Class I, II for SSTL-135 and SSTL-125 I/O standards.</li> </ul> </li> <li>Table 19: <ul> <li>Changed the minimum data rate specification for transmitter and receiver data rates.</li> <li>Changed the minimum frequency specification for the fractional PLL.</li> <li>Changed the Core Speed Grade with Power Options section in Table 20.</li> </ul> </li> </ul> |

| Date          | Version    | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |            | <ul> <li>Table 21:</li> <li>Changed the minimum data rate specification for transmitter and receiver data rates.</li> <li>Changed the minimum frequency specification for the Fractional PLL.</li> <li>Changed the minimum frequency specification for the CMU PLL.</li> <li>Changed the minimum frequency of the ATX PLL.</li> <li>Table 23:</li> <li>Added a note to the High Speed Differential I/O standard.</li> <li>Changed the specifications for CLKUSR pin.</li> <li>Added columns in Table 29.</li> <li>Changed the minimum fri<sub>SCLK_in</sub> and t<sub>xJitter</sub> in Table 32.</li> <li>Changed the minimum formula for t<sub>CD2UMC</sub> in Table 42, Table 43, Table 44, and Table 46.</li> <li>Changed the IOCSR rbf size.</li> <li>Added Recommended EPCQ-L Serial Configuration Device.</li> <li>Changed the DCLK frequency and minimum configuration Device.</li> <li>Changed the following tables:</li> <li>External Temperature Sensing Diode Specifications for Arria 10 Devices</li> <li>IOE Programmable Delay for Arria 10 Devices with Data Rates ≥ 8 Gbps</li> <li>Removed the CTLE Response in High Gain Mode for Arria 10 Devices with Data Rates &lt; 8 Gbps</li> </ul> |
| March 2014    | 2014.03.14 | Updated Table 3, Table 5, Table 21, Table 23, Table 24, Table 32, and Table 41.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| December 2013 | 2013.12.06 | Updated Figure 1 and Figure 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| December 2013 | 2013.12.02 | Initial release.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

